scholarly journals Aerodynamics Analysis of a Slotted A4412 Wind Turbine Airfoil Using CFD / Case Two

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Omar M. Elmosrati

The static pressure, dynamic pressure and velocity magnitude are important parameters and have a strong influence on airfoil lift force. In this paper a slotted NACA4412 airfoil profile is considered for analysis by using the commercial code ANSYS-FLUENT 14.5® at an inlet boundary condition of different approaching wind velocities for various airfoil angles of attack in the range 0?to 24?. Renormalized group (RNG) k-? turbulence model with enhanced wall function is used for the analysis due its’ wide usage in the aerodynamic industry. Variations of the physical properties like static pressure, dynamic pressure and velocity magnitude are plotted in form of contours and/or vectors. The main aim of the research is to find out a method to enhance the efficiency of the selected airfoil and its’ workability in a wide range of low and high wind speeds which might make it suitable for installation and operation in different climates.This feasibility of enhancing the lift is and/or minimizing the drag is done by CFD on a series of independently modified NACA4412 airfoils. The current one is called Case 2. The analysis output of Case 2 is not encouraging. It does not show any improvement in NACA4412 airfoil efficiency and therefore it is classified as (obsolete).

2012 ◽  
Vol 5 (11) ◽  
pp. 2569-2579 ◽  
Author(s):  
A. R. Rodi ◽  
D. C. Leon

Abstract. A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.


2013 ◽  
Vol 6 (1) ◽  
pp. 105-120
Author(s):  
Nazar Muneam Mahmood

In this research a simulation of steady flow of a gas through a convergent divergent nozzle which has a varying cross sectional area will be considered. The nature of the flow can be explained by considering how the flow and its characteristics in the nozzle changes as nthe back pressure Pb is decreased.The characteristics of gas flow i.e.(Mach number, static pressure, density, velocity magnitude and static temperature) distributions for the convergent divergent nozzle are implemented by using the ANSYS Fluent 12.1 software to solve the quasi-one dimensional nozzle flow.The reductions in the back pressure cannot affect conditions upstream of the throat. The nozzle is, therefore, choked. The shock wave increases the pressure, density and temperature and reduces the velocity and Mach number to a subsonic value, and as back pressure is further reduced to a certain value, the extent of the supersonic flow region increases, the shock wave moving further down the divergent portion of the nozzle towards the exit plane.


2014 ◽  
Vol 675-677 ◽  
pp. 1490-1494
Author(s):  
Zeng Li Xiao ◽  
Jun Bin Chen ◽  
Wen Long Qin

The fine grain, poor sorting and high cement content in low permeability reservoirs lead to poor reservoir property, low porosity and permeability and have strong damage to the reservoir .The conventional way of low permeability oil mining is mainly fracture and chemical flooding, which cost is relatively high and will cause serious irreparable damage to formation. People are in favor of physical oil production technology because it is no harm and pollution to the reservoir, more flexible to operate and it has wide range of application and low cost. By using high frequency pulse pressure servo system and ZC-type I, this paper examines the low-frequency vibration oil recovery indoor simulation test device hydraulic pulse oil displacement effect of low permeability cores. The experiment selecting the artificial core (permeability are less than 50), examines the effects of different hydraulic pulse parameters (frequency, static pressure and dynamic pressure) on low permeability core permeability and recovery factor. The results showed that only when the three parameter ,hydraulic pulse frequency, static pressure and dynamic pressure, suitably combined will greatly increase the reservoir recovery efficiency and reduce residual oil saturation.


2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Santhosh V

In marine vehicle like ships, submarine and torpedoes use propeller for its propulsion, Propeller is to develop the thrust and propulsive efficiency. The paper deals with modeling and analyzing of a screw propeller. There are several important parameters to be considered for modeling screw propeller by using Solidworks software. Static and dynamic analysis is to be carried out in Ansys fluent software. Thus, the simulation of screw propeller provides maximum velocity to the outlet. So, the velocity distribution has been observed. Then the velocity distribution is displayed by means of velocity magnitude in meter per second and static pressure in pascal.


Author(s):  
M.G. Yagodin ◽  
E.I. Starovoytenko

The equipment for the production of wide range of metal powders purposed for powder metallurgy is described. The possibility for producing of powders by the plasma centrifugal spraying is considered taking into account the gas dynamic pressure. The calculated data on the powder size for different materials are given.


Author(s):  
Jesse J. French ◽  
Colton T. Sheets

Wind energy capture in today’s environment is often focused on producing large amounts of power through massive turbines operating at high wind speeds. The device presented by the authors performs on the extreme opposite scale of these large wind turbines. Utilizing vortex induced vibration combined with developed and demonstrated piezoelectric energy harvesting techniques, the device produces power consistent with peer technologies in the rapidly growing field of micro-energy harvesting. Vortex-induced vibrations in the Karman vortex street are the catalyst for energy production of the device. To optimize power output, resonant frequency of the harvester is matched to vortex shedding frequency at a given wind speed, producing a lock-on effect that results in the greatest amplitude of oscillation. The frequency of oscillation is varied by altering the effective spring constant of the device, thereby allowing for “tuning” of the device to specific wind environments. While localized wind conditions are never able to be predicted with absolute certainty, patterns can be established through thorough data collection. Sampling of local wind conditions led to the design and testing of harvesters operating within a range of wind velocities between approximately 4 mph and 25 mph. For the extremities of this range, devices were constructed with resonant frequencies of approximately 17 and 163 Hz. Frequency variation was achieved through altering the material composition and geometry of the energy harvester. Experimentation was performed on harvesters to determine power output at optimized fluid velocity, as well as above and below. Analysis was also conducted on shedding characteristics of the device over the tested range of wind velocities. Computational modeling of the device is performed and compared to experimentally produced data.


Author(s):  
Marcus Kuschel ◽  
Bastian Drechsel ◽  
David Kluß ◽  
Joerg R. Seume

Exhaust diffusers downstream of turbines are used to transform the kinetic energy of the flow into static pressure. The static pressure at the turbine outlet is thus decreased by the diffuser, which in turn increases the technical work as well as the efficiency of the turbine significantly. Consequently, diffuser designs aim to achieve high pressure recovery at a wide range of operating points. Current diffuser design is based on conservative design charts, developed for laminar, uniform, axial flow. However, several previous investigations have shown that the aerodynamic loading and the pressure recovery of diffusers can be increased significantly if the turbine outflow is taken into consideration. Although it is known that the turbine outflow can reduce boundary layer separations in the diffuser, less information is available regarding the physical mechanisms that are responsible for the stabilization of the diffuser flow. An analysis using the Lumley invariance charts shows that high pressure recovery is only achieved for those operating points in which the near-shroud turbulence structure is axi-symmetric with a major radial turbulent transport component. This turbulent transport originates mainly from the wake and the tip vortices of the upstream rotor. These structures energize the boundary layer and thus suppress separation. A logarithmic function is shown that correlates empirically the pressure recovery vs. the relevant Reynolds stresses. The present results suggest that an improved prediction of diffuser performance requires modeling approaches that account for the anisotropy of turbulence.


Author(s):  
А.В. ГУКАСЯН ◽  
В.С. КОСАЧЕВ ◽  
Е.П. КОШЕВОЙ

Получено аналитическое решение двумерного слоистого напорного течения в канале шнека, позволяющее моделировать расходно-напорные характеристики прямоугольных каналов шнековых прессов с учетом гидравлического сопротивления формующих устройств и рассчитывать расходно-напорные характеристики экструдеров в широком диапазоне геометрии витков как в поперечном сечении, так и по длине канала. Obtained the analytical solution of two-dimensional layered pressure flow in the screw channel, allow to simulate the flow-dynamic pressure characteristics of rectangular channels screw presses taking into account the hydraulic resistance of the forming device and calculate the mass flow-dynamic pressure characteristics of the extruders in a wide range of the geometry of the coils, as in its cross section and along the length of the channel.


Author(s):  
Dilip Prasad

Windmilling requirements for aircraft engines often define propulsion and airframe design parameters. The present study is focused is on two key quantities of interest during windmill operation: fan rotational speed and stage losses. A model for the rotor exit flow is developed, that serves to bring out a similarity parameter for the fan rotational speed. Furthermore, the model shows that the spanwise flow profiles are independent of the throughflow, being determined solely by the configuration geometry. Interrogation of previous numerical simulations verifies the self-similar nature of the flow. The analysis also demonstrates that the vane inlet dynamic pressure is the appropriate scale for the stagnation pressure loss across the rotor and splitter. Examination of the simulation results for the stator reveals that the flow blockage resulting from the severely negative incidence that occurs at windmill remains constant across a wide range of mass flow rates. For a given throughflow rate, the velocity scale is then shown to be that associated with the unblocked vane exit area, leading naturally to the definition of a dynamic pressure scale for the stator stagnation pressure loss. The proposed scaling procedures for the component losses are applied to the flow configuration of Prasad and Lord (2010). Comparison of simulation results for the rotor-splitter and stator losses determined using these procedures indicates very good agreement. Analogous to the loss scaling, a procedure based on the fan speed similarity parameter is developed to determine the windmill rotational speed and is also found to be in good agreement with engine data. Thus, despite their simplicity, the methods developed here possess sufficient fidelity to be employed in design prediction models for aircraft propulsion systems.


Author(s):  
Nur Alom ◽  
Ujjwal K. Saha

The Savonius rotor appears to be particularly promising for the small-scale applications because of its design simplicity, good starting ability, and insensitivity to wind directions. There has been a growing interest in recent times to harness wind energy in an efficient manner by developing newer blade profiles of Savonius rotor. The overlap ratio (OR), one of the important geometric parameters, plays a crucial role in the turbine performance. In a recent study, an elliptical blade profile with a sectional cut angle (θ) of 47.5° has demonstrated its superior performance when set at an OR = 0.20. However, this value of OR is ideal for a semicircular profile, and therefore, requires further investigation to arrive at the optimum overlap ratio for the elliptical profile. In view of this, the present study attempts to make a systemic numerical study to arrive at the optimum OR of the elliptical profile having sectional cut angle, θ = 47.5°. The 2D unsteady simulation is carried out around the elliptical profile considering various overlap ratios in the range of 0.0 to 0.30. The continuity, unsteady Reynolds Averaged Navier-Stokes (URANS) equations and two equation eddy viscosity SST (Shear Stress transport) k-ω model are solved by using the commercial finite volume method (FVM) based solver ANSYS Fluent. The torque and power coefficients are calculated as a function of tip speed ratio (TSR) and at rotating conditions. The total pressure, velocity magnitude and turbulence intensity contours are obtained and analyzed to arrive at the intended objective. The numerical simulation demonstrates an improved performance of the elliptical profile at an OR = 0.15.


Sign in / Sign up

Export Citation Format

Share Document