scholarly journals Particle Characterisation of Traditional Homeopathically Manufactured Medicine Cuprum metallicum and Controls

Author(s):  
Michel Van Wassenhoven

Background: Homeopathy is highly controversial. The main reason for this is its use of very highly dilute medicines (high homeopathic potencies, HHP), diluted beyond the Avogadro/Loschmidt limit. Research using several different methods has demonstrated the presence of particles, including nanoparticles of source material, in HHPs. This study aims to verify the results of a previous publication that detected the presence of particles in all dilutions. Methods: We used the Nano Tracking Analyzer (NTA) to examine dilutions of a commonly used homeopathic medicine, an insoluble metal, Cuprum metallicum, for the presence of particles. The homeopathic medicines tested were specially prepared according to the European pharmacopoeia standards. We compared the homeopathic dilutions/dynamizations with simple dilutions and controls including a soluble medicine. Results: We observed the presence of solid material in all preparations including HHPs (except for pure water). The measurements showed significant differences in particle sizes distribution between homeopathic manufacturing lines and controls. Conclusion: Homeopathic medicines do contain material with a specific size distribution even in HHPs diluted beyond the Avogadro/Loschmidt limit. This specificity can be attributed to the manufacturing and potentization process. This material demonstrates that the step-by-step process (dynamized or not) does not match the theoretical expectations in a dilution process. The starting material and dilution/dynamization method influences the nature and concentration of these NPs.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1003
Author(s):  
Pantharee Kongsat ◽  
Sakprayut Sinthupinyo ◽  
Edgar A. O’Rear ◽  
Thirawudh Pongprayoon

Several types of hematite nanoparticles (α-Fe2O3) have been investigated for their effects on the structure and properties of fly ash (FA) blended cement. All synthesized nanoparticles were found to be of spherical shape, but of different particle sizes ranging from 10 to 195 nm depending on the surfactant used in their preparation. The cement hydration with time showed 1.0% α-Fe2O3 nanoparticles are effective accelerators for FA blended cement. Moreover, adding α-Fe2O3 nanoparticles in FA blended cement enhanced the compressive strength and workability of cement. Nanoparticle size and size distribution were important for optimal filling of various size of pores within the cement structure.


1981 ◽  
Vol 2 ◽  
pp. 78-84 ◽  
Author(s):  
Daniel E. Lawson

The origins of diamictons deposited at the Matanuska Glacier are identified in stratigraphic sequences mainly by the presence or absence of a pebble fabric, internal structure, and variation in gravel-size clast distribution. These properties correlate with major differences in depositional mechanisms and source material. Melt-out till mostly inherits fabric, internal structure, and grain-size distribution from its debris-laden basal ice source. Sediment flow deposits and ice-slope colluvium (deposited by ablational slope processes) have properties developed by resedimentation mechanisms. Melt-out till ranges from structureless to stratified with interspersed lenses and discontinuous laminae, and generally possesses a well-defined pebble fabric. Sediment flow deposits show various combinations of six sedimentologic units with distinct sedimentary features and clast dispersion. Pebble fabric is absent or poorly defined, depending upon the unit's origin. Ice-slope colluvium is usually featureless, except for randomly-dispersed laminated lenses and irregularly-shaped gravelly zones in an otherwise disarrayed assemblage of particles, and is without a pebble fabric.


2010 ◽  
Vol 10 (2) ◽  
pp. 3605-3625
Author(s):  
G. Baumgarten ◽  
J. Fiedler ◽  
M. Rapp

Abstract. Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02. For the vertically resolved particle properties (Δz=0.15 km) the slope is smaller and only 0.39±0.03. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements.


Author(s):  
H. Lin ◽  
X. Zhang ◽  
Y. Yang ◽  
X. Wu ◽  
D. Guo

From geologic perspective, understanding the types, abundance, and size distributions of minerals allows us to address what geologic processes have been active on the lunar and planetary surface. The imaging spectrometer which was carried by the Yutu Rover of Chinese Chang’E-3 mission collected the reflectance at four different sites at the height of ~ 1 m, providing a new insight to understand the lunar surface. The mineral composition and Particle Size Distribution (PSD) of these four sites were derived in this study using a Radiative Transfer Model (RTM) and Sparse Unmixing (SU) algorithm. The endmembers used were clinopyroxene, orthopyroxene, olivine, plagioclase and agglutinate collected from the lunar sample spectral dataset in RELAB. The results show that the agglutinate, clinopyroxene and olivine are the dominant minerals around the landing site. In location Node E, the abundance of agglutinate can reach up to 70 %, and the abundances of clinopyroxene and olivine are around 10 %. The mean particle sizes and the deviations of these endmembers were retrieved. PSDs of all these endmembers are close to normal distribution, and differences exist in the mean particle sizes, indicating the difference of space weathering rate of these endmembers.


Soil Research ◽  
2016 ◽  
Vol 54 (8) ◽  
pp. 937 ◽  
Author(s):  
Ewane Basil Ewane ◽  
Heon-Ho Lee

Sediments were collected from four slow vegetation recovery plots, six fast vegetation recovery plots and five unburned plots at a post-fire site on a rainfall event basis and sorted for size distribution. The aim was to evaluate the effects of vegetation cover, soil aggregate stability, slope and rainfall intensity on sediment size distribution, transport selectivity and erosion processes between the burned and unburned treatment plots. Sediment detachment and transport mechanisms and the particle size transport selectivity of the eroded sediment were assessed based on enrichment ratios (ER) and mean weighted diameter (MWD) methods. The most eroded particle size class in all treatment plots was the 125–250μm class and, generally, the percentage of eroded particle sizes did not increase with slope and rainfall intensity. Higher MWD of the eroded sediment was related to a higher percentage of bare soil exposed and gravel content associated with high soil burn severity and soil disaggregation in the slow vegetation recovery plots. The enrichment of finer clay silt particle sizes increased with varying maximum 30-min rainfall intensity (I30) in the slow vegetation recovery plots, and reflected increased aggregate breakdown and transport selectivity, whereas no good relationship was found in the fast vegetation recovery and unburned plots with varying I30. A minimum I30 of <3.56mmh–1 and a maximum of 10.9mmh–1 were found to be the threshold rainfall intensity values necessary for aggregate breakdown and transport of finer particles by both rainsplash and rainflow in the slow vegetation recovery plots, whereas the response was weak in the fast vegetation recovery and unburned plots following varying I30 dominated only by rainsplash transport closer to the plot sediment collector. The results show that higher vegetation cover in the fast vegetation recovery and unburned plots reduces erosive rainfall energy by 5.6- and 17.7-fold respectively, and runoff energy by 6.3- and 21.3-fold respectively, limiting aggregate breakdown and transport selectivity of finer particles compared with the slow vegetation recovery plots.


2018 ◽  
Vol 618 ◽  
pp. A75 ◽  
Author(s):  
Noemi Schaffer ◽  
Chao-Chin Yang ◽  
Anders Johansen

The radial drift and diffusion of dust particles in protoplanetary disks affect both the opacity and temperature of such disks, as well as the location and timing of planetesimal formation. In this paper, we present results of numerical simulations of particle-gas dynamics in protoplanetary disks that include dust grains with various size distributions. We have considered three scenarios in terms of particle size ranges, one where the Stokes number τs = 10−1−100, one where τs = 10−4−10−1, and finally one where τs = 10−3−100. Moreover, we considered both discrete and continuous distributions in particle size. In accordance with previous works we find in our multispecies simulations that different particle sizes interact via the gas and as a result their dynamics changes compared to the single-species case. The larger species trigger the streaming instability and create turbulence that drives the diffusion of the solid materials. We measured the radial equilibrium velocity of the system and find that the radial drift velocity of the large particles is reduced in the multispecies simulations and that the small particle species move on average outwards. We also varied the steepness of the size distribution, such that the exponent of the solid number density distribution, dN∕da ∝ a−q, is either q = 3 or q = 4. Overall, we find that the steepness of the size distribution and the discrete versus continuous approach have little impact on the results. The level of diffusion and drift rates are mainly dictated by the range of particle sizes. We measured the scale height of the particles and observe that small grains are stirred up well above the sedimented midplane layer where the large particles reside. Our measured diffusion and drift parameters can be used in coagulation models for planet formation as well as to understand relative mixing of the components of primitive meteorites (matrix, chondrules and CAIs) prior to inclusion in their parent bodies.


2010 ◽  
Vol 56 (No. 4) ◽  
pp. 154-158 ◽  
Author(s):  
T. Vítěz ◽  
P. Trávníček

Particle size distribution of the sample of waste sawdust and wood shavings mixtures were made with two commonly used methods of mathematical models by Rosin-Rammler (RR model) and by Gates-Gaudin-Schuhmann (GGS model).On the basis of network analysis distribution function F (d) (mass fraction) and density function f (d) (number of particles captured between two screens) were obtained. Experimental data were evaluated using the RR model and GGS model, both models were compared. Better results were achieved with GGS model, which leads to a more accurate separation of the different particle sizes in order to obtain a better industrial profit of the material.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3272
Author(s):  
Ellefsen ◽  
Arzig ◽  
Steiner ◽  
Wellmann ◽  
Runde

We have studied the influence of different SiC powder size distributions and the sublimation behavior during physical vapor transport growth of SiC in a 75 mm and 100 mm crystal processing configuration. The evolution of the source material as well as of the crystal growth interface was carried out using in situ 3D X-ray computed tomography (75 mm crystals) and in situ 2D X-ray visualization (100 mm crystals). Beside the SiC powder size distribution, the source materials differed in the maximum packaging density and thermal properties. In this latter case of the highest packaging density, the in situ X-ray studies revealed an improved growth interface stability that enabled a much longer crystal growth process. During process time, the sublimation-recrystallization behavior showed a much smoother morphology change and slower materials consumption, as well as a much more stable shape of the growth interface than in the cases of the less dense SiC source. By adapting the size distribution of the SiC source material we achieved to significantly enhance stable growth conditions.


2012 ◽  
Vol 190-191 ◽  
pp. 1355-1360
Author(s):  
Shen Hua Hu ◽  
Xiang Rong Ma ◽  
Fan Wu

An experiment for Marangoni condensation of ethanol-water mixtures was carried out and the departing radius and drop size distribution on vertical surface was presented. An amended formula was obtained after considering the effect of ethanol mass concentration, vapor velocity and condensing temperature difference based on Le Fevre’s formula concerning departing radius of pure water, The calculations were in good agreement with experimental result, had a maximum error less than 23%. Owing to the significant effect on drop size contribution, vapor velocity was introduced into Rose’s formula, and the correctional result compared well with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document