Evaluating water balance components for forested headwater catchment undergoing environmental changes

Author(s):  
Veronika Mikesova ◽  
Michal Dohnal ◽  
Jana Votrubova ◽  
Tomas Vogel

<p>Evaluating seasonal and long-term variations in water balance at catchment scale can be useful for assessing the current status and trends in water resources availability. Components of water balance reflect meteorological and climate variability, and vegetation cover development.</p><p>The experimental catchment Uhlířská is a small forested headwater catchment in the Jizera Mountains, Czech Republic. The catchment was extensively deforested in the 80´s. Damaged trees long exposed to the effects of air pollutants were poorly resistant to wind and pests. In the 90´s, new spruce forest was planted. The catchment has been subject to long-term monitoring. The 19-year series of data including air temperature, rain and snow precipitation, discharge, groundwater levels, wind velocity, and air humidity, is examined.</p><p>Our study provides basic analysis of directly measured components of water balance (precipitation and discharge, annual and seasonal runoff coefficients). The study further deals with the evaluation of the unmeasured components of the water balance (evapotranspiration and water storage). An interception model was employed to calculate the interception loss. Potential evaporation and transpiration during vegetation seasons were estimated by Penman and Penman-Monteith methods. Snow sublimation was estimated in the winter seasons. Effect of the forest development during the period of interest was considered.</p><p>The catchment water balance equation suggests significant changes of the water storage over the observation period, implying its decrease in recent years. However, baseflow and deep water storage seem to be unchanged. This discrepancy could be partly attributed to the decrease in shallow water storage and/or more pronounced transpiration reduction in recent vegetation seasons.</p><p>The research is supported by the Czech Science Foundation Project No. 20-00788S.</p>

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 613
Author(s):  
Ravindra Dwivedi ◽  
John F. Knowles ◽  
Christopher Eastoe ◽  
Rebecca Minor ◽  
Nathan Abramson ◽  
...  

We used the weighted wavelet method to perform spectral analysis of observed long-term precipitation, streamflow, actual evapotranspiration, and soil water storage at a sub-humid mountain catchment near Tucson, Arizona, USA. Fractal scaling in precipitation and the daily change in soil water storage occurred up to a period of 14 days and corresponded to the typical duration of relatively wet and dry intervals. In contrast, fractal scaling could be observed up to a period of 0.5 years in streamflow and actual evapotranspiration. By considering long-term observations of hydrologic fluxes and storages, we show that, in contrast to previous findings, the phase relationships between water balance components changed with component period and were not perfectly in or out of phase at all periods. Self-averaging behavior was apparent, but the temporal scales over which this behavior was applicable differed among the various water balance components. Conservative tracer analysis showed that this catchment acted as a fractal filter by transforming white noise in the precipitation input signal to a 1/f flicker in the streamflow output signal by means of both spatial and temporal subsurface advection and dispersion processes and soil wetting properties. This study provides an improved understanding of hydrological filtering behavior in mountain critical zones that are critical sources of water and ecosystem services throughout the world.


2021 ◽  
Author(s):  
Steven Reinaldo Rusli ◽  
Albrecht Weerts ◽  
Victor Bense

<p>In this study, we estimate the water balance components of a highly groundwater-dependent and hydrological data-scarce basin of the upper reaches of the Citarum river in West Java, Indonesia. Firstly, we estimate the groundwater abstraction volumes based on population size and a review of literature (0.57mm/day). Estimates of other components like rainfall, actual evaporation, discharge, and total water storage changes are derived from global datasets and are simulated using a distributed hydrological wflow_sbm model which yields additional estimates of discharge, actual evaporation, and total water storage change. We compare each basin water balance estimate as well as quantify the uncertainty of some of the components using the Extended Triple Collocation (ETC) method.</p><p>The ETC application on four different rainfall estimates suggests a preference of using the CHIRPS product as the input to the water balance components estimates as it delivers the highest r<sup>2</sup>  and the lowest RMSE compared to three other sources. From the different data sources and results of the distributed hydrological modeling using CHIRPS as rainfall forcing, we estimate a positive groundwater storage change between 0.12 mm/day - 0.60 mm/day. These results are in agreement with groundwater storage change estimates based upon GRACE gravimetric satellite data, averaged at 0.25 mm/day. The positive groundwater storage change suggests sufficient groundwater recharge occurs compensating for groundwater abstraction. This conclusion seems in agreement with the observation since 2005, although measured in different magnitudes. To validate and narrow the estimated ranges of the basin water storage changes, a devoted groundwater model is necessary to be developed. The result shall also aid in assessing the current and future basin-scale groundwater level changes to support operational water management and policy in the Upper Citarum basin.</p>


2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


Author(s):  
Vadim Yapiyev ◽  
Kanat Samarkhanov ◽  
Dauren Zhumabayev ◽  
Nazym Tulegenova ◽  
Saltanat Jumassultanova ◽  
...  

Both climate change and anthropogenic activities contribute to the deterioration of terrestrial water resources and ecosystems worldwide. Central Asian endorheic basins are among the most affected regions through both climate and human impacts. Here, we used a digital elevation model, digitized bathymetry maps and Landsat images to estimate the areal water cover extent and volumetric storage changes in small terminal lakes in Burabay National Nature Park (BNNP), located in Northern Central Asia (CA), for the period of 1986 to 2016. Based on the analysis of long-term climatic data from meteorological stations, short-term hydrometeorological network observations, gridded climate datasets (CRU) and global atmospheric reanalysis (ERA Interim), we have evaluated the impacts of historical climatic conditions on the water balance of BNNP lake catchments. We also discuss the future based on regional climate model projections. We attribute the overall decline of BNNP lakes to long-term deficit of water balance with lake evaporation loss exceeding precipitation inputs. Direct anthropogenic water abstraction has a minor importance in water balance. However, the changes in watersheds caused by the expansion of human settlements and roads disrupting water drainage may play a more significant role in lake water storage decline. More precise water resources assessment at the local scale will be facilitated by further development of freely available higher spatial resolution remote sensing products. In addition, the results of this work can be used for the development of lake/reservoir evaporation models driven by remote sensing and atmospheric reanalysis data without the direct use of ground observations.


2017 ◽  
Vol 21 (6) ◽  
pp. 3167-3182 ◽  
Author(s):  
Andreas Güntner ◽  
Marvin Reich ◽  
Michal Mikolaj ◽  
Benjamin Creutzfeldt ◽  
Stephan Schroeder ◽  
...  

Abstract. In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet–temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 39 ◽  
Author(s):  
Salem S. Gharbia ◽  
Laurence Gill ◽  
Paul Johnston ◽  
Francesco Pilla

Parametrising the spatially distributed dynamic catchment water balance is a critical factor in studying the hydrological system responses to climate and land use changes. This study presents the development of a geographic information system (GIS)-based set of algorithms (geographical spatially distributed water balance model (GEO-CWB)), which is developed from integrating physical, statistical, and machine learning models. The GEO-CWB tool has been developed to simulate and predict future spatially distributed dynamic water balance using GIS environment at the catchment scale in response to the future changes in climate variables and land use through a user-friendly interface. The tool helps in bridging the gap in quantifying the high-resolution dynamic water balance components for the large catchments by reducing the computational costs. Also, this paper presents the application and validation of GEO-CWB on the Shannon catchment in Ireland as an example of a large and complicated hydrological system. It can be concluded that climate and land use changes have significant effects on the spatial and temporal patterns of the different water balance components of the catchment.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2333 ◽  
Author(s):  
Dario Ruggiu ◽  
Francesco Viola

The prediction of long term water balance components is not a trivial issue, even when empirical Budyko’s type approaches are used, because parameter estimation is often hampered by missing or poor hydrological data. In order to overcome this issue, we provided regression equations that link climate, morphological, and vegetation parameters to Fu’s parameter. Climate is here defined as a specific seasonal pattern of potential evapotranspiration and rain: five climatic scenarios have been considered to mimic different conditions worldwide. A weather generator has been used to create stochastic time series for the related climatic scenario, which in turn has been used as an input to a conceptual hydrological model to obtain long-term water balance components with low computational effort, while preserving fundamental process descriptions. The morphology and vegetation’s role in determining water partitioning process has been epitomized in four parameters of the conceptual model. Numerical simulations explored a large set of basins in the five climates. Results show that climate superimposes partitioning rules for a given basin; morphological and vegetation watershed properties, as conceptualized by model parameters, determine the Fu’s parameter within a given climate. A sensitive analysis confirmed that vegetation has the most influencing role in determining water partitioning rules, followed by soil permeability. Finally, linear regressions relating basin characteristics to Fu’s parameter have been obtained in the five climates and tested in a basin for each case, obtaining encouraging results. The small amount of data required and the very low computational effort of the method make this approach ideal for practitioners and hydrologists involved in annual runoff assessment.


2020 ◽  
Author(s):  
Saksham Joshi ◽  
Venkat Raju Pokkuluri ◽  
Annie Issac ◽  
Venkateshwar Rao ◽  
Pamaraju Venkata Rao ◽  
...  

Author(s):  
Yinhong Kang ◽  
Lu Zhang ◽  
Warrick Dawes

Abstract In this paper, the long-term dynamics of water balance components in two different contrasting ecosystems in Australia were simulated with an ecohydrological model (WAter Vegetation Energy and Solute modelling (WAVES)) over the period 1950–2015. The selected two ecosystems are woodland savanna in Daly River and Eucalyptus forest in Tumbarumba. The WAVES model was first manually calibrated and validated against soil water content measured by cosmic-ray probe and evapotranspiration measured with eddy flux techniques. The calibrated model was then used to simulate long-term water balance components with observed climate data at two sites. Analyzing the trends and variabilities of potential evapotranspiration and precipitation is used to interpret the climate change impacts on ecosystem water balance. The results showed that the WAVES model can accurately simulate soil water content and evapotranspiration at two study sites. Over the period of 1950–2015, annual evapotranspiration at both sites showed decreasing trends (−1.988 mm year−1 in Daly and −0.381 mm year−1 in Tumbarumba), whereas annual runoff in Daly increased significantly (5.870 mm year−1) and decreased in Tumbarumba (–0.886 mm year−1). It can be concluded that the annual runoff trends are consistent with the rainfall trends, whereas trends in annual evapotranspiration are influenced by both rainfall and potential evapotranspiration. The results can provide evidence for controlling the impacting factors for different ecosystems under climate change.


2016 ◽  
Vol 57 (72) ◽  
pp. 11-18 ◽  
Author(s):  
Michael Kuhn ◽  
Kay Helfricht ◽  
Martin Ortner ◽  
Johannes Landmann ◽  
Wolfgang Gurgiser

ABSTRACTThe retention and release of liquid water in glacierized basins was modelled with a conceptual, semi-distributed model of the water and ice balance designed for long-term averages with monthly resolution for 100 m elevation bands. Here we present the components of the liquid water balance of 86 mostly glacierized basins on either side of the main Alpine divide between 10 and 13°E in the period 1998–2006 and compare them with the records of 30 basins monitored from 1970 to 1997. Basin average of liquid water retention has maxima in excess of 100 mm per month in May, often followed by maximum release when the retaining snow matrix melts. Glacier storage peaks in August partly due to ice melt and the ensuing filling of the englacial reservoirs and partly on account of a precipitation maximum. These two components combined to a common maximum of storage in summer in the first period 1970–97 and developed two distinct maxima in the warmer period 1998–2006. A further maximum of liquid water storage that was often found in October is most likely due to a peak in precipitation in the southern part of the study region.


Sign in / Sign up

Export Citation Format

Share Document