Breaking the temporal barrier in air quality monitoring over Europe with Sentinel-4

Author(s):  
Diego Loyola ◽  
Michael Aspetsberger ◽  
Oleg Dubovik ◽  
Daniele Fantin ◽  
Yves Govaerts ◽  
...  

<p>European UVN satellite missions deliver global measurements for air quality and climate applications from Low Earth Orbit (LEO) satellites since over two decades. Currently we have in the morning data from GOME-2 on the three MetOp satellites and in the early afternoon data from OMI/Aura and TROPOMI/Sentinel-5 Precursor.</p><p>The temporal barrier imposed by LEO satellites, providing only one daily observation, can be broken using Geostationary Equatorial Orbit (GEO) satellites. The Sentinel-4 (S4) mission on-board the MTG-S GEO satellite will focus on monitoring of trace gas column densities and aerosols over Europe with an hourly revisit time, thereby covering the diurnal variation of atmospheric constituents.</p><p>We present the algorithm, verification, and processor work being performed as part of the ESA Sentinel-4 Level 2 (S4-L2) project responsible for developing the operational S4-L2 products: O<sub>3</sub> total and tropospheric column, NO<sub>2</sub> total and tropospheric column, SO<sub>2</sub>, HCHO, CHOCHO columns, aerosol and cloud properties as well as surface reflectance.</p><p> </p>

2016 ◽  
Vol 120 (1226) ◽  
pp. 573-599 ◽  
Author(s):  
B. Chudoba ◽  
G. Coleman ◽  
L. Gonzalez ◽  
E. Haney ◽  
A. Oza ◽  
...  

ABSTRACTIn an effort to quantify the feasibility of candidate space architectures for astronauts servicing Geosynchronous Earth Orbit (GEO) satellites, a conceptual assessment of architecture-concept and operations-technology combinations has been performed. The focus has been the development of a system with the capability to transfer payload to and from geostationary orbit. Two primary concepts of operations have been selected: (a) Direct insertion/re-entry (Concept of Operations 1 – CONOP 1); (b) Launch to low-earth orbit at Kennedy Space Center inclination angle with an orbital transfer to/from geostationary orbit (Concept of Operations 2 – CONOP 2). The study concludes that a capsule and de-orbit propulsion module system sized for the geostationary satellite servicing mission is feasible for a direct insertion/re-entry concept of operation CONOP 1. Vehicles sized for CONOP 2 show overall total mass savings when utilising the aero-assisted orbital transfer vehicle de-orbit propulsion module options compared to the pure propulsive baseline cases. Overall, the consideration of technical, operational and cost factors determine if either the aero-assisted orbital transfer vehicle concepts or the re-usable/expendable ascent/de-orbit propulsion modules is the preferred option.


2015 ◽  
Vol 25 (1) ◽  
Author(s):  
EA Marais ◽  
K Chance

African populations and economies are growing rapidly, but there are few surface observations to monitor the effects on air quality. Trend analysis of the 19-year record of space-based observations from remote sensors onboard low Earth orbit (LEO) satellites shows that anthropogenic pollution is on the rise. Conversely, biomass burning, the largest contributor to surface ozone, is declining. UVvisible instruments on LEO satellites with daily resolution have provided invaluable constraints on sources, evolution, and transport of air pollution in Africa. Sensors in geostationary orbit (GEO) with hourly resolution and a smaller ground pixel than current and past fleets of LEO satellites would further our understanding of air quality in Africa and address the dearth of surface monitoring sites on the continent. Africa has successfully launched Earth observation platforms to retrieve satellite imagery and should expand its remote sensing capabilities by joining the northern hemisphere constellation of GEO Earth observation satellites.


2019 ◽  
Vol 11 (3) ◽  
pp. 228 ◽  
Author(s):  
Xingxing Li ◽  
Hongbo Lv ◽  
Fujian Ma ◽  
Xin Li ◽  
Jinghui Liu ◽  
...  

It is widely known that in real-time kinematic (RTK) solution, the convergence and ambiguity-fixed speeds are critical requirements to achieve centimeter-level positioning, especially in medium-to-long baselines. Recently, the current status of the global navigation satellite systems (GNSS) can be improved by employing low earth orbit (LEO) satellites. In this study, an initial assessment is applied for LEO constellations augmented GNSS RTK positioning, where four designed LEO constellations with different satellite numbers, as well as the nominal GPS constellation, are simulated and adopted for analysis. In terms of aforementioned constellations solutions, the statistical results of a 68.7-km baseline show that when introducing 60, 96, 192, and 288 polar-orbiting LEO constellations, the RTK convergence time can be shortened from 4.94 to 2.73, 1.47, 0.92, and 0.73 min, respectively. In addition, the average time to first fix (TTFF) can be decreased from 7.28 to 3.33, 2.38, 1.22, and 0.87 min, respectively. Meanwhile, further improvements could be satisfied in several elements such as corresponding fixing ratio, number of visible satellites, position dilution of precision (PDOP) and baseline solution precision. Furthermore, the performance of the combined GPS/LEO RTK is evaluated over various-length baselines, based on convergence time and TTFF. The research findings show that the medium-to-long baseline schemes confirm that LEO satellites do helpfully obtain faster convergence and fixing, especially in the case of long baselines, using large LEO constellations, subsequently, the average TTFF for long baselines has a substantial shortened about 90%, in other words from 12 to 2 min approximately by combining with the larger LEO constellation of 192 or 288 satellites. It is interesting to denote that similar improvements can be observed from the convergence time.


2007 ◽  
Vol 45 (9) ◽  
pp. 2747-2758 ◽  
Author(s):  
D.G.L. Rodriguez ◽  
W. Thomas ◽  
Y. Livschitz ◽  
T. Ruppert ◽  
P. Albert ◽  
...  
Keyword(s):  

2014 ◽  
Vol 7 (2) ◽  
pp. 1645-1689
Author(s):  
E. Hache ◽  
J.-L. Attié ◽  
C. Tourneur ◽  
P. Ricaud ◽  
L. Coret ◽  
...  

Abstract. Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0–1 km column). We consider one week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0–1 km ozone column during the daytime especially over land.


2021 ◽  
Author(s):  
Pieternel F. Levelt ◽  
Deborah C. Stein Zweers ◽  
Ilse Aben ◽  
Maite Bauwens ◽  
Tobias Borsdorff ◽  
...  

Abstract. The aim of this paper is two-fold: to provide guidance on how to best interpret TROPOMI trace gas retrievals and to highlight how TROPOMI trace gas data can be used to understand event-based impacts on air quality from regional to city-scales around the globe. For this study, we present the observed changes in the atmospheric column amounts of five trace gases (NO2, SO2, CO, HCHO and CHOCHO) detected by the Sentinel-5P TROPOMI instrument, driven by reductions of anthropogenic emissions due to COVID-19 lockdown measures in 2020. We report clear COVID-19-related decreases in NO2 concentrations on all continents. For megacities, reductions in column amounts of tropospheric NO2 range between 14 % and 63 %. For China and India supported by NO2 observations, where the primary source of anthropogenic SO2 is coal-fired power generation, we were able to detect sector-specific emission changes using the SO2 data. For HCHO and CHOCHO, we consistently observe anthropogenic changes in two-week averaged column amounts over China and India during the early phases of the lockdown periods. That these variations over such a short time scale are detectable from space, is due to the high resolution and improved sensitivity of the TROPOMI instrument. For CO, we observe a small reduction over China which is in concert with the other trace gas reductions observed during lockdown, however large, interannual differences prevent firm conclusions from being drawn. The joint analysis of COVID-19 lockdown-driven reductions in satellite observed trace gas column amounts, using the latest operational and scientific retrieval techniques for five species concomitantly is unprecedented. However, the meteorologically and seasonally driven variability of the five trace gases does not allow for drawing fully quantitative conclusions on the reduction of anthropogenic emissions based on TROPOMI observations alone. We anticipate that in future, the combined use of inverse modelling techniques with the high spatial resolution data from S5P/TROPOMI for all observed trace gases presented here, will yield a significantly improved sector-specific, space-based analysis of the impact of COVID-19 lockdown measures as compared to other existing satellite observations. Such analyses will further enhance the scientific impact and societal relevance of the TROPOMI mission.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 280
Author(s):  
Farzan Farhangian ◽  
Hamza Benzerrouk ◽  
Rene Landry

With the emergence of numerous low Earth orbit (LEO) satellite constellations such as Iridium-Next, Globalstar, Orbcomm, Starlink, and OneWeb, the idea of considering their downlink signals as a source of pseudorange and pseudorange rate measurements has become incredibly attractive to the community. LEO satellites could be a reliable alternative for environments or situations in which the global navigation satellite system (GNSS) is blocked or inaccessible. In this article, we present a novel in-flight alignment method for a strapdown inertial navigation system (SINS) using Doppler shift measurements obtained from single or multi-constellation LEO satellites and a rotation technique applied on the inertial measurement unit (IMU). Firstly, a regular Doppler positioning algorithm based on the extended Kalman filter (EKF) calculates states of the receiver. This system is considered as a slave block. In parallel, a master INS estimates the position, velocity, and attitude of the system. Secondly, the linearized state space model of the INS errors is formulated. The alignment model accounts for obtaining the errors of the INS by a Kalman filter. The measurements of this system are the difference in the outputs from the master and slave systems. Thirdly, as the observability rank of the system is not sufficient for estimating all the parameters, a discrete dual-axis IMU rotation sequence was simulated. By increasing the observability rank of the system, all the states were estimated. Two experiments were performed with different overhead satellites and numbers of constellations: one for a ground vehicle and another for a small flight vehicle. Finally, the results showed a significant improvement compared to stand-alone INS and the regular Doppler positioning method. The error of the ground test reached around 26 m. This error for the flight test was demonstrated in different time intervals from the starting point of the trajectory. The proposed method showed a 180% accuracy improvement compared to the Doppler positioning method for up to 4.5 min after blocking the GNSS.


2021 ◽  
Author(s):  
Simone M. Pieber ◽  
Dac-Loc Nguyen ◽  
Hendryk Czech ◽  
Stephan Henne ◽  
Nicolas Bukowiecki ◽  
...  

<p>Open biomass burning (BB) is a globally widespread phenomenon. The fires release pollutants, which are harmful for human and ecosystem health and alter the Earth's radiative balance. Yet, the impact of various types of BB on the global radiative forcing remains poorly constrained concerning greenhouse gas emissions, BB organic aerosol (OA) chemical composition and related light absorbing properties. Fire emissions composition is influenced by multiple factors (e.g., fuel and thereby vegetation-type, fuel moisture, fire temperature, available oxygen). Due to regional variations in these parameters, studies in different world regions are needed. Here we investigate the influence of seasonally recurring BB on trace gas concentration and air quality at the regional Global Atmosphere Watch (GAW) station Pha Din (PDI) in rural Northwestern Vietnam. PDI is located in a sparsely populated area on the top of a hill (1466 m a.s.l.) and is well suited to study the large-scale fires on the Indochinese Peninsula, whose pollution plumes are frequently transported towards the site [1]. We present continuous trace gas observations of CO<sub>2</sub>, CH<sub>4</sub>, CO, and O<sub>3</sub> conducted at PDI since 2014 and interpret the data with atmospheric transport simulations. Annually recurrent large scale BB leads to hourly time-scale peaks CO mixing ratios at PDI of 1000 to 1500 ppb around every April since the start of data collection in 2014. We complement this analysis with carbonaceous PM<sub>2.5 </sub>chemical composition analyzed during an intensive campaign in March-April 2015. This includes measurements of elemental and organic carbon (EC/OC) and more than 50 organic markers, such as sugars, PAHs, fatty acids and nitro-aromatics [2]. For the intensive campaign, we linked CO, CO<sub>2</sub>, CH<sub>4</sub> and O<sub>3</sub> mixing ratios to a statistical classification of BB events, which is based on OA composition. We found increased CO and O<sub>3</sub> levels during medium and high BB influence during the intensive campaign. A backward trajectory analysis confirmed different source regions for the identified periods based on the OA cluster. Typically, cleaner air masses arrived from northeast, i.e., mainland China and Yellow sea during the intensive campaign. The more polluted periods were characterized by trajectories from southwest, with more continental recirculation of the medium cluster, and more westerly advection for the high cluster. These findings highlight that BB activities in Northern Southeast Asia significantly enhances the regional OA loading, chemical PM<sub>2.5 </sub>composition and the trace gases in northwestern Vietnam. The presented analysis adds valuable data on air quality in a region of scarce data availability.</p><p> </p><p><strong>REFERENCES</strong></p><p>[1] Bukowiecki, N. et al. Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. AAQR. 19, 1172–1187 (2019).</p><p>[2] Nguyen, D. L, et al. Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case-study in Northwestern Vietnam. ACPD., https://doi.org/10.5194/acp-2020-1027, in review, 2020.</p>


2016 ◽  
Vol 9 (6) ◽  
pp. 2647-2668 ◽  
Author(s):  
Caroline R. Nowlan ◽  
Xiong Liu ◽  
James W. Leitch ◽  
Kelly Chance ◽  
Gonzalo González Abad ◽  
...  

Abstract. The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.


2019 ◽  
Vol 11 (21) ◽  
pp. 2514 ◽  
Author(s):  
Xingxing Li ◽  
Keke Zhang ◽  
Fujian Ma ◽  
Wei Zhang ◽  
Qian Zhang ◽  
...  

Global navigation satellite system (GNSS) orbits are traditionally determined by observation data of ground stations, which usually need even global distribution to ensure adequate observation geometry strength. However, good tracking geometry cannot be achieved for all GNSS satellites due to many factors, such as limited ground stations and special stationary characteristics for the geostationary Earth orbit (GEO) satellites in the BeiDou constellation. Fortunately, the onboard observations from low earth orbiters (LEO) can be an important supplement to overcome the weakness in tracking geometry. In this contribution, we perform large LEO constellation-augmented multi-GNSS precise orbit determination (POD) based on simulated GNSS observations. Six LEO constellations with different satellites numbers, orbit types, and altitudes, as well as global and regional ground networks, are designed to assess the influence of different tracking configurations on the integrated POD. Then, onboard and ground-based GNSS observations are simulated, without regard to the observations between LEO satellites and ground stations. The results show that compared with ground-based POD, a remarkable accuracy improvement of over 70% can be observed for all GNSS satellites when the entire LEO constellation is introduced. Particularly, BDS GEO satellites can obtain centimeter-level orbits, with the largest accuracy improvement being 98%. Compared with the 60-LEO and 66-LEO schemes, the 96-LEO scheme yields an improvement in orbit accuracy of about 1 cm for GEO satellites and 1 mm for other satellites because of the increase of LEO satellites, but leading to a steep rise in the computational time. In terms of the orbital types, the sun-synchronous-orbiting constellation can yield a better tracking geometry for GNSS satellites and a stronger augmentation than the polar-orbiting constellation. As for the LEO altitude, there are almost no large-orbit accuracy differences among the 600, 1000, and 1400 km schemes except for BDS GEO satellites. Furthermore, the GNSS orbit is found to have less dependence on ground stations when incorporating a large number of LEO. The orbit accuracy of the integrated POD with 8 global stations is almost comparable to the result of integrated POD with a denser global network of 65 stations. In addition, we also present an analysis concerning the integrated POD with a partial LEO constellation. The result demonstrates that introducing part of a LEO constellation can be an effective way to balance the conflict between the orbit accuracy and computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document