Experimental microfracture propagation in gneiss through frost wedging

Author(s):  
Flavio Anselmetti ◽  
Ferdinando Musso Piantelli ◽  
Marco Herwegh ◽  
Marius Waldvogel ◽  
Ueli Gruner

<p>Ice-driven mechanical weathering in mountainous environment is considered an efficient process for slow preconditioning of rockfalls. In this study (Musso Piantelli et al., 2020), we simulate with an innovative experimental approach subcritical fracture-propagation under frost-wedging conditions through pre-existing weaknesses of intact rock bridges. Two series of freeze-thaw experiments in an environmental chamber have been designed to investigate and monitor the propagation of artificially-induced fractures (AIF) in two twin gneiss samples. By employing 3D X-Ray Computed Tomography and a displacement sensor, an accurate characterization and new insights into the fracture-propagation mechanism are provided. Our results demonstrate that frost wedging propagated the AIFs of 1.25 cm2 and 3.5 cm2 after 42 and 87 freeze-thaw cycles, respectively. The experiments show that volumetric expansion of water upon freezing, cooperating with volumetric thermal expansion and contraction of the rock, plays a key role in fracture widening and propagation. Based on these results, this study proposes that: (i) frost wedging exploits intrinsic pre-existing weaknesses of the rock; (ii) the fracturing process is not continuous but alternates propagation stages to phases of tensile stress accumulation; and (iii) downward migration of “wedging grains”, stuck between the walls of the fracture, increases the tensile stress at the tip, widening and propagating the fractures with each freeze-thaw cycle. The experimental design developed in this study offers the chance to visualize fracture-propagation in natural joints quantifying the long-term efficiency of this process in near-natural scenarios.</p><p>REFERENCES</p><p>Musso Piantelli, F., Herwegh, M., Anselmetti, F.S., Waldvogel, M., Gruner, U., (2020). Microfracture propagation in gneiss through frost wedging: insights from an experimental study. Natural Hazards, 1-18. https://doi.org/10.1007/s11069-019-03846-3</p>

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


2021 ◽  
Vol 28 (3) ◽  
pp. 954-967
Author(s):  
Jie-lin Li ◽  
Long-yin Zhu ◽  
Ke-ping Zhou ◽  
Hui Chen ◽  
Le Gao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


2012 ◽  
Vol 455-456 ◽  
pp. 781-785
Author(s):  
Ping Lu ◽  
Xin Mao Li ◽  
Xue Qiang Ma ◽  
Wei Bo Huang

. This paper mainly studied the properties of PAE polyurea coated concrete under coactions of salt fog and freeze-thaw. After exposed salt fog conditions for 200d, T3, B2, F2 and TM four coated concrete relative dynamic elastic modulus have small changes, but different coated concrete variation amplitude is different. T3 coated concrete after 100 times of freeze-thaw cycle the relative dynamic elastic modulus began to drop, 200 times freeze-thaw cycle ends, relative dynamic elastic modulus variation is the largest, decrease rate is 95%, TM concrete during 200 times freeze-thaw cycle, relative dynamic elastic modulus almost no change, B2 concrete and F2 concrete the extent of change between coating T3 and TM. After 300 times the freeze-thaw cycle coated concrete didn't appear freeze-thaw damage phenomenon. Four kinds of coating concrete relative dynamic elastic modulus variation by large to small order: T3 coated concrete > B2 coated concrete >F2 coated concrete > TM coated concrete, concrete with the same 200d rule. Frost resistance order, by contrast, TM coated concrete > B2 coated concrete > F2 coated concrete > T3 coated concrete.


2005 ◽  
Vol 27 (9) ◽  
pp. 655-660 ◽  
Author(s):  
Dong-Wook Han ◽  
Hak Hee Kim ◽  
Mi Hee Lee ◽  
Hyun Sook Baek ◽  
Kwon-Yong Lee ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Man Huang ◽  
Bin Tang ◽  
Jianliang Jiang ◽  
Renqiu Guan ◽  
Huajun Wang

The freeze-thaw duration is one of the important factors affecting the change of rock properties. However, this factor has not formed a unified standard in the freeze-thaw cycle test. This study uses saturated tuff samples taken from eastern Zhejiang, China, as research objects to explore the change law of the time required for the rock to reach a full freeze-thaw cycle. Measured results show that the total duration of the freeze-thaw cycle presents an increasing power function with the increase in the number of freeze-thaw cycles. The freezing process is divided into three phases: initial freezing, water-ice phase transition, and deep freezing. The melting process is also divided into three phases: initial melting, ice-water phase transition, and deep melting. The time required for the ice-water phase change stage of the melting process does not change with the increase in the number of freeze-thaw cycles, while the other stages increase as a power function. The proportion of duration of each stage in the freezing process does not change with the increase in the number of cycles. By contrast, the duration proportion of the initial melting phase in the melting process decreases, and the deep melting phase increases. Experimental results of the freeze-thaw cycles of tuff demonstrate that the freeze-thaw duration of the freeze-thaw cycles within 40 times can be set to 9 h. The freezing and melting processes are 6 and 3 h, respectively.


Sign in / Sign up

Export Citation Format

Share Document