GNSS antenna calibration tables evaluated by means of large volume metrology

Author(s):  
Sten Bergstrand ◽  
Per Jarlemark ◽  
Magnus Herbertsson

<p>We have developed a novel method in which a pair of GNSS antennas with similar characteristics are used to evaluate hidden systematic errors in existing GNSS calibrations with the help of high-end industrial metrology equipment. We tilt the calibrated antennas out of parallel and sort the observations in individual antenna reference frames rather than epoch time. With the combined and compared measurements, we can sort out the different elevation dependent uncertainties in the GNSS observations and quantify the errors of the calibration methods. We show the extent to which the calibration method error systematically maps as troposphere and height components in the GNSS processing and in the worst case found this to be > 1 cm in the vertical when using the ionosphere-free frequency combination L3. While showing results in the presentation for the full elevation range in 5° elevation cells, we report here the 1σ uncertainties of our method for 30° elevation at ±0.38 mm on L1 and ±0.62 mm on L3 with respect to the antenna phase centers. Once uncertainties have been characterized at this level, the etalon antennas can be deployed as space geodetic anchor points at core sites without compromising existing installations.</p>

2018 ◽  
Vol 35 (14) ◽  
pp. 2458-2465 ◽  
Author(s):  
Johanna Schwarz ◽  
Dominik Heider

Abstract Motivation Clinical decision support systems have been applied in numerous fields, ranging from cancer survival toward drug resistance prediction. Nevertheless, clinical decision support systems typically have a caveat: many of them are perceived as black-boxes by non-experts and, unfortunately, the obtained scores cannot usually be interpreted as class probability estimates. In probability-focused medical applications, it is not sufficient to perform well with regards to discrimination and, consequently, various calibration methods have been developed to enable probabilistic interpretation. The aims of this study were (i) to develop a tool for fast and comparative analysis of different calibration methods, (ii) to demonstrate their limitations for the use on clinical data and (iii) to introduce our novel method GUESS. Results We compared the performances of two different state-of-the-art calibration methods, namely histogram binning and Bayesian Binning in Quantiles, as well as our novel method GUESS on both, simulated and real-world datasets. GUESS demonstrated calibration performance comparable to the state-of-the-art methods and always retained accurate class discrimination. GUESS showed superior calibration performance in small datasets and therefore may be an optimal calibration method for typical clinical datasets. Moreover, we provide a framework (CalibratR) for R, which can be used to identify the most suitable calibration method for novel datasets in a timely and efficient manner. Using calibrated probability estimates instead of original classifier scores will contribute to the acceptance and dissemination of machine learning based classification models in cost-sensitive applications, such as clinical research. Availability and implementation GUESS as part of CalibratR can be downloaded at CRAN.


GEOMATICA ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 97-112 ◽  
Author(s):  
M. Leslar ◽  
J.G. Wang ◽  
B. Hu

Unlike Mobile Airborne LiDAR (MAL), it has become common for Mobile Terrestrial LiDAR (MTL) sys tems to consist of two or more LiDAR sensors. It is a challenging task for a user to simultaneously verify and calibrate their lever arms and boresight angles with respect to the IMU using the kinematic data. This paper presents a novel method for determination of MTL calibration parameters using the vector geometry created by a stereo pair of MTL sensors. Through the use of the stereo information provided by a pair of MTL sensors working in tandem, system parameters such as lever arm and boresight angles can be deter mined for both sen sors based on a single pass of a calibration object or scene. In this way, any data collected by a multi-sensor MTL can potentially be used to calibrate the system. Unlike many other calibration methods for calibrating MTL and MAL systems, the proposed method enables the simultaneous calibration of all lever arm and bore sight parameters for all of the LiDAR sensors integrated into the MTL system. Many MTL systems do not make it easy for end users to measure the lever arms, usually forcing users to fall back on mechanical drawings to determine the lever arms. The calibration method has been realized using test data acquired by two inde pend ent Lynx Mobile Mapper systems on 1) a single pass of a typical 400-m-long urban street scene and 2) a single pass around a calibration building. Each experiment succeeded at producing arc - second accurate boresight and sub-centimetre accurate lever arm parameters. Several scenarios were run. It was found that this accuracy level could be practically maintained with a control field consisting of five to seven control points dis tributed on horizontal and vertical surfaces.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Sten Bergstrand ◽  
Per Jarlemark ◽  
Magnus Herbertsson

Abstract We evaluated the performance of GNSS absolute antenna calibrations and its impact on accurate positioning with a new assessment method that combines inter-antenna differentials and laser tracker measurements. We thus separated the calibration method contributions from those attainable by various geometric constraints and produced corrections for the calibrations. We investigated antennas calibrated by two IGS-approved institutions and in the worst case found the calibration’s contribution to the vertical component being in excess of 1 cm on the ionosphere-free frequency combination L3. In relation to nearby objects, we gauge the $$1\sigma $$ 1 σ accuracies of our method to determine the antenna phase centers within $$\pm \,0.38$$ ± 0.38  mm on L1 and within $$\pm \,0.62$$ ± 0.62  mm on L3, the latter applicable to global frame determinations where atmospheric influence cannot be neglected. In addition to antenna calibration corrections, the results can be used with an equivalent tracker combination to determine the phase centers of as-installed individual receiver antennas at system critical sites to the same level without compromising the permanent installations.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 765
Author(s):  
Hugo Álvarez ◽  
Marcos Alonso ◽  
Jairo R. Sánchez ◽  
Alberto Izaguirre

This paper describes a method for calibrating multi camera and multi laser 3D triangulation systems, particularly for those using Scheimpflug adapters. Under this configuration, the focus plane of the camera is located at the laser plane, making it difficult to use traditional calibration methods, such as chessboard pattern-based strategies. Our method uses a conical calibration object whose intersections with the laser planes generate stepped line patterns that can be used to calculate the camera-laser homographies. The calibration object has been designed to calibrate scanners for revolving surfaces, but it can be easily extended to linear setups. The experiments carried out show that the proposed system has a precision of 0.1 mm.


2021 ◽  
Vol 11 (2) ◽  
pp. 582
Author(s):  
Zean Bu ◽  
Changku Sun ◽  
Peng Wang ◽  
Hang Dong

Calibration between multiple sensors is a fundamental procedure for data fusion. To address the problems of large errors and tedious operation, we present a novel method to conduct the calibration between light detection and ranging (LiDAR) and camera. We invent a calibration target, which is an arbitrary triangular pyramid with three chessboard patterns on its three planes. The target contains both 3D information and 2D information, which can be utilized to obtain intrinsic parameters of the camera and extrinsic parameters of the system. In the proposed method, the world coordinate system is established through the triangular pyramid. We extract the equations of triangular pyramid planes to find the relative transformation between two sensors. One capture of camera and LiDAR is sufficient for calibration, and errors are reduced by minimizing the distance between points and planes. Furthermore, the accuracy can be increased by more captures. We carried out experiments on simulated data with varying degrees of noise and numbers of frames. Finally, the calibration results were verified by real data through incremental validation and analyzing the root mean square error (RMSE), demonstrating that our calibration method is robust and provides state-of-the-art performance.


Robotica ◽  
2021 ◽  
pp. 1-22
Author(s):  
Zhouxiang Jiang ◽  
Min Huang

SUMMARY In typical calibration methods (kinematic or non-kinematic) for serial industrial robot, though measurement instruments with high resolutions are adopted, measurement configurations are optimized, and redundant parameters are eliminated from identification model, calibration accuracy is still limited under measurement noise. This might be because huge gaps still exist among the singular values of typical identification Jacobians, thereby causing the identification models ill conditioned. This paper addresses such problem by using new identification models established in two steps. First, the typical models are divided into the submodels with truncated singular values. In this way, the unknown parameters corresponding to the abnormal singular values are removed, thereby reducing the condition numbers of the new submodels. However, these models might still be ill conditioned. Therefore, the second step is to further centralize the singular values of each submodel by using a matrix balance method. Afterward, all submodels are well conditioned and obtain much higher observability indices compared with those of typical models. Simulation results indicate that significant improvements in the stability of identification results and the identifiability of unknown parameters are acquired by using the new identification submodels. Experimental results indicate that the proposed calibration method increases the identification accuracy without incurring additional hardware setup costs to the typical calibration method.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 139
Author(s):  
Shengli Chen ◽  
Xiaobing Zheng ◽  
Xin Li ◽  
Wei Wei ◽  
Shenda Du ◽  
...  

To calibrate the low signal response of the ocean color (OC) bands and test the stability of the Fengyun-3D (FY-3D)/Medium Resolution Spectral Imager II (MERSI-II), an absolute radiometric calibration field test of FY-3D/MERSI-II at the Lake Qinghai Radiometric Calibration Site (RCS) was carried out in August 2018. The lake surface and atmospheric parameters were mainly measured by advanced observation instruments, and the MODerate spectral resolution atmospheric TRANsmittance algorithm and computer model (MODTRAN4.0) was used to simulate the multiple scattering radiance value at the altitude of the sensor. The results showed that the relative deviations between bands 9 and 12 are within 5.0%, while the relative deviations of bands 8, and 13 are 17.1%, and 12.0%, respectively. The precision of the calibration method was verified by calibrating the Aqua/Moderate-resolution Imaging Spectroradiometer (MODIS) and National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer (VIIRS), and the deviation of the calibration results was evaluated with the results of the Dunhuang RCS calibration and lunar calibration. The results showed that the relative deviations of NPP/VIIRS were within 7.0%, and the relative deviations of Aqua/MODIS were within 4.1% from 400 nm to 600 nm. The comparisons of three on-orbit calibration methods indicated that band 8 exhibited a large attenuation after launch and the calibration results had good consistency at the other bands except for band 13. The uncertainty value of the whole calibration system was approximately 6.3%, and the uncertainty brought by the field surface measurement reached 5.4%, which might be the main reason for the relatively large deviation of band 13. This study verifies the feasibility of the vicarious calibration method at the Lake Qinghai RCS and provides the basis and reference for the subsequent on-orbit calibration of FY-3D/MERSI-II.


2021 ◽  
Vol 11 (2) ◽  
pp. 22
Author(s):  
Umberto Ferlito ◽  
Alfio Dario Grasso ◽  
Michele Vaiana ◽  
Giuseppe Bruno

Charge-Based Capacitance Measurement (CBCM) technique is a simple but effective technique for measuring capacitance values down to the attofarad level. However, when adopted for fully on-chip implementation, this technique suffers output offset caused by mismatches and process variations. This paper introduces a novel method that compensates the offset of a fully integrated differential CBCM electronic front-end. After a detailed theoretical analysis of the differential CBCM topology, we present and discuss a modified architecture that compensates mismatches and increases robustness against mismatches and process variations. The proposed circuit has been simulated using a standard 130-nm technology and shows a sensitivity of 1.3 mV/aF and a 20× reduction of the standard deviation of the differential output voltage as compared to the traditional solution.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 534 ◽  
Author(s):  
Line Elgaard ◽  
Line A. Mielby ◽  
Helene Hopfer ◽  
Derek V. Byrne

Feedback on panel performance is traditionally provided by the panel leader, following an evaluation session. However, a novel method for providing immediate feedback to panelists was proposed, the Feedback Calibration Method (FCM). The aim of the current study was to compare the performance of two panels trained by using FCM with two different approaches for ranges calibration, namely self-calibrated and fixed ranges. Both panels were trained using FCM for nine one-hour sessions, followed by a sensory evaluation of five beer samples (in replicates). Results showed no difference in sample positioning in the sensory space by the two panels. Furthermore, the panels’ discriminability was also similar, while the self-calibrated panel had the highest repeatability. The results from the average distance from target and standard deviations showed that the self-calibrated panel had the lowest distance from target and standard deviation throughout all sessions. However, the decrease in average distance from target and standard deviations over training sessions was similar among panels, meaning that the increase in performance was similar. The fact that both panels had a similar increase in performance and yielded similar sensory profiles indicates that the choice of target value calibration method is unimportant. However, the use of self-calibrated ranges could introduce an issue with the progression of the target scores over session, which is why the fixed target ranges should be applied, if available.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Roberto Pagani ◽  
Cristina Nuzzi ◽  
Marco Ghidelli ◽  
Alberto Borboni ◽  
Matteo Lancini ◽  
...  

Since cobots are designed to be flexible, they are frequently repositioned to change the production line according to the needs; hence, their working area (user frame) needs to be often calibrated. Therefore, it is important to adopt a fast and intuitive user frame calibration method that allows even non-expert users to perform the procedure effectively, reducing the possible mistakes that may arise in such contexts. The aim of this work was to quantitatively assess the performance of different user frame calibration procedures in terms of accuracy, complexity, and calibration time, to allow a reliable choice of which calibration method to adopt and the number of calibration points to use, given the requirements of the specific application. This has been done by first analyzing the performances of a Rethink Robotics Sawyer robot built-in user frame calibration method (Robot Positioning System, RPS) based on the analysis of a fiducial marker distortion obtained from the image acquired by the wrist camera. This resulted in a quantitative analysis of the limitations of this approach that only computes local calibration planes, highlighting the reduction of performances observed. Hence, the analysis focused on the comparison between two traditional calibration methods involving rigid markers to determine the best number of calibration points to adopt to achieve good repeatability performances. The analysis shows that, among the three methods, the RPS one resulted in very poor repeatability performances (1.42 mm), while the three and five points calibration methods achieve lower values (0.33 mm and 0.12 mm, respectively) which are closer to the reference repeatability (0.08 mm). Moreover, comparing the overall calibration times achieved by the three methods, it is shown that, incrementing the number of calibration points to more than five, it is not suggested since it could lead to a plateau in the performances, while increasing the overall calibration time.


Sign in / Sign up

Export Citation Format

Share Document