Brittle deformation during eclogitization: a perspective from a cold, early Paleozoic subduction zone

Author(s):  
Michał Bukała ◽  
Christopher Barnes ◽  
Iwona Klonowska ◽  
Károly Hidas ◽  
Kathrin Fassmer ◽  
...  

<p>The Tsäkkok Lens (northern Scandinavian Caledonides) represents the outermost part of the rifted passive Baltica margin and consists of sediments and pillow basalts of MORB affinity that were metamorphosed under eclogite facies conditions. Fieldwork and further multidisciplinary analytical approach (including e.g. X-ray and EBSD mapping, and μ-CT imaging) revealed that eclogites record brittle deformation on the μm-to-m scale. This deformation is expressed as a set of microfractures (single-grain rupture) and mesofractures (sealed by garnet- and omphacite-veins). Phase equilibrium thermodynamic modeling of phengite-bearing and phengite-free eclogites performed in NCKFMMnASHT and NCFMMnASHT systems predict profuse dehydration related to lawsonite and amphibole breakdown at ~2.35 GPa and ~600°C, close to the peak conditions of ~2.55 GPa and ~640°C. These estimates are in line with conventional thermobarometry and Zr-in-rutile thermometry results. The evidence for dehydration is also provided by the  occurrence of relic glaucophane in matrix and polyphase inclusions in garnet consisting of clinozoisite + quartz ± kyanite ± paragonite that are interpreted as pseudomorphs after lawsonite. Dehydration reactions were responsible for producing fluid, which facilitated brittle fracturing of the eclogites at HP conditions due to increased pore-fluid pressure (also promoted by the volume changes during eclogitization) on the microscale. Altogether, micro- and mesofracturing acted as migration pathways for released fluid, whereas the microfractures are likely precursors of the mesoscale fractures. Garnet-WR Lu-Hf geochronology provided ages of 487.7 ± 4.6, 486.2 ± 3.2, and 484.6 ± 4.5 Ma. LA-ICP-MS trace element profiles of garnet revealed a well-pronounced peak of Lu content in the garnet cores that decreased towards the rims, indicating these dates represent the age of prograde metamorphism. Therefore, the early Paleozoic Tsäkkok Lens eclogites constitute the oldest documented natural example of HP brittle deformation during eclogitization of blueschist.</p><p>Research funded by NCN project no. 2019/33/N/ST10/01479 (M. Bukała) and no. 2014/14/E/ST10/00321 (J. Majka), as well as the Polish National Agency for the Academic Exchange scholarship no. PPN/IWA/2018/1/00046/U/0001 given to M. Bukała.</p>

2020 ◽  
Vol 8 ◽  
Author(s):  
Michał Bukała ◽  
Christopher J. Barnes ◽  
Pauline Jeanneret ◽  
Károly Hidas ◽  
Stanisław Mazur ◽  
...  

The Tsäkkok Lens of the Scandinavian Caledonides represents the outermost Baltican margin that was subducted in late Cambrian/Early Ordovician time during closure of the Iapetus Ocean. The lens predominantly consists of metasedimentary rocks hosting eclogite bodies that preserve brittle deformation on the μm-to-m scale. Here, we present a multidisciplinary approach that reveals fracturing related to dehydration and eclogitization of blueschists. Evidence for dehydration is provided by relic glaucophane and polyphase inclusions in garnet consisting of clinozoisite + quartz ± kyanite ± paragonite that are interpreted as lawsonite pseudomorphs. X-Ray chemical mapping of garnet shows a network of microchannels that propagate outward from polyphase inclusions. These microchannels are healed by garnet with elevated Mg relative to the surrounding garnet. Electron backscatter diffraction mapping revealed that Mg-rich microchannels are also delimited by low angle (<3°) boundaries. X-ray computed microtomography demonstrates that some garnet is transected by up to 300 μm wide microfractures that are sealed by omphacite ± quartz ± phengite. Locally, mesofractures sealed either by garnet- or omphacite-dominated veins transect through the eclogites. The interstices within the garnet veins are filled with omphacite + quartz + rutile + glaucophane ± phengite. In contrast, omphacite veins are predominantly composed of omphacite with minor apatite + quartz. Omphacite grains are elongated along [001] crystal axis and are preferably oriented orthogonal to the vein walls, indicating crystallization during fracture dilation. Conventional geothermobarometry using omphacite, phengite and garnet adjacent to fractures, provides pressure-temperature conditions of 2.47 ± 0.32 GPa and 620 ± 60°C for eclogites. The same method applied to a mesoscale garnet vein yields 2.42 ± 0.32 GPa at 635 ± 60°C. Zirconium-in-rutile thermometry applied to the same garnet vein provides a temperature of ∼620°C. Altogether, the microchannels, microfractures and mesofractures represent migration pathways for fluids that were produced during glaucophane and lawsonite breakdown. The microfractures are likely precursors of the mesoscale fractures. These dehydration reactions indicate that high pore-fluid pressure was a crucial factor for fracturing. Brittle failure of the eclogites thus represents a mechanism for fluid-escape in high-pressure conditions. These features may be directly associated with seismic events in a cold subduction regime.


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 489-511 ◽  
Author(s):  
Francesca Prando ◽  
Luca Menegon ◽  
Mark Anderson ◽  
Barbara Marchesini ◽  
Jussi Mattila ◽  
...  

Abstract. The microstructural record of fault rocks active at the brittle–ductile transition zone (BDTZ) may retain information on the rheological parameters driving the switch in deformation mode and on the role of stress and fluid pressure in controlling different fault slip behaviours. In this study we analysed the deformation microstructures of the strike-slip fault zone BFZ045 in Olkiluoto (SW Finland), located in the site of a deep geological repository for nuclear waste. We combined microstructural analysis, electron backscatter diffraction (EBSD), and mineral chemistry data to reconstruct the variations in pressure, temperature, fluid pressure, and differential stress that mediated deformation and strain localization along BFZ045 across the BDTZ. BFZ045 exhibits a mixed ductile–brittle deformation, with a narrow (<20 cm thick) brittle fault core with cataclasites and pseudotachylytes that overprint a wider (60–100 cm thick) quartz-rich mylonite. Mylonitic deformation took place at 400–500 ∘C and 3–4 kbar, typical of the greenschist facies metamorphism at the base of the seismogenic crust. We used the recrystallized grain size piezometry for quartz to document a progressive increase in differential stress, from ca. 50 to ca. 120 MPa, towards the shear zone centre during mylonitization and strain localization. Syn-kinematic quartz veins formed along the mylonitic foliation due to transiently high pore fluid pressure (up to lithostatic value). The overprint of the veins by dynamic recrystallization and mylonitic creep is further evidence of the occurrence of brittle events under overall ductile conditions. We propose a conceptual model in which the ductile–brittle deformation cycle was controlled by transient oscillations in fluid pressure and progressively higher differential stress, possibly occurring in a narrowing shear zone deforming towards the peak strength of the crust at the BDTZ.


2020 ◽  
Author(s):  
Nicolas Brantut ◽  
Emmanuel David

&lt;p&gt;High Vp/Vs ratio is a commonly used diagnostic for elevated fluid pressure when interpreting seismological data. The physical basis for this interpretation comes from rock physical data and models of isotropic, cracked rocks. Here, we establish precise conditions under which this interpretation is correct, by using an effective medium approach for fluid-saturated rocks. While the usual result of an increasing Vp/Vs with increasing fluid-saturated porosity holds for crack-like pores, we find that Vp/Vs ratio is not always monotonically increasing with increasing fluid content if the porosity shape deviates from thin cracks, and if the initial Vp/Vs of the rock (without porosity) is already quite high. This is specifically the case of dehydrating rocks, where initial Vp/Vs may already be high (&gt;1.9 for lizardite, for instance), and where the porosity created by the dehydration reaction may be in the form of elongated needles. The model predictions are supported by existing experimental data obtained during dehydration experiments in gypsum and lizardite, which both show a significant decrease in Vp/Vs as dehydration proceeds. Although no experimental data is yet availbale on antigorite, we make a prediction that antigorite dehydration may not lead to any strong increase in Vp/Vs ratio under typical subduction zone conditions. We present our theoretical results in the form of simple closed-form solution (valid asymptotically for a range of limiting cases), which should help guide the interpretation of Vp/Vs ratio from seismological data.&lt;/p&gt;


2020 ◽  
Author(s):  
Francesca Piccoli ◽  
Pierre Lanari ◽  
Jörg Hermann ◽  
Thomas Pettke

&lt;p&gt;Subducted metapelites are more prone to re-equilibrate during exhumation than mafic or ultramafic rocks to the point that recognizing high-pressure (HP) relicts is often very challenging. Geologic evidence from the Cima Lunga Unit (Central Alps) show this apparent discrepancy between high to ultra-high pressure metamorphism (28 kbar and 780 &amp;#176;C) recorded in mafic/ultramafic lenses, and Barrovian metamorphism (&lt;10 kbar, 650&amp;#176;C) in the adjacent metapelitic rocks. We collected a white mica &amp;#8211; garnet &amp;#8211; biotite &amp;#8211; plagioclase &amp;#8211; kyanite (+ quartz, + zircon, + rutile) bearing metapelite adjacent to the garnet metaperidotite lens that displays an apparently well equilibrated Barrovian mineral assemblage (garnet + plagioclase + biotite), with no macroscopic or microtextural indication of a HP and/or HT metamorphic event (e.g. omphacite crystals; migmatitic texture; polyphase inclusions). Nevertheless, microstructures like atoll-like garnet or large white mica flakes surrounded by biotite and ilmenite replacing rutile suggest incomplete re-equilibration. We investigated garnet and phengite crystals by electron probe and laser ablation-ICP-MS mapping. Major and trace element mapping reveals very complex mineral zoning in both minerals. In particular, high Ti content in phengite and increasing P and Zr contents in pyrope-rich garnet indicate that the studied rock underwent a HP-HT event. This is also supported by Zr in rutile thermometry that indicates temperatures well above the Barrovian metamorphism (T &gt; 700 &amp;#176;C). We combined detailed textural analysis with petrological-geochemical data and thermodynamic modelling to reconstruct the metamorphic evolution of the studied rock. We show that, thank to incomplete re-equilibration, the rock documents an evolution from prograde to UHP-HT peak (27 kbar and 800 &amp;#176;C) to retrograde (Barrovian) conditions (10 kbar and 620 &amp;#176;C). Noteworthy, peak metamorphic conditions of metapelite coincide with peak metamorphic conditions of the garnet metaperidotite. Lastly, geochemical evidence for minor wet melting of the studied metapelite at HP-HT conditions was recognized and is likely linked to the dehydration of chlorite to form garnet peridotite in the adjacent ultramafic body. We propose that metapelites and ultramafic rocks were coupled before subduction or at least in its early stage. This finding opens new scenarios for the geodynamic interpretation of the Cima Lunga unit. We propose that the ultramafic lenses at Cima di Gagnone were parts of the exhumed and serpentinised mantle emplaced at the hyper-extended European continental margin of the Piemont-Ligurian ocean. Slices of the margin were detached and tectonically mixed in the subduction channel. These new constraints call for re-evaluation of the paleogeographic position of the Adula-Cima Lunga nappe.&lt;/p&gt;


2003 ◽  
Vol 370 (1-4) ◽  
pp. 241-251 ◽  
Author(s):  
S.A. Miller ◽  
W. van der Zee ◽  
D.L. Olgaard ◽  
J.A.D. Connolly

2022 ◽  
Author(s):  
Jérémie Soldner ◽  
Yingde Jiang ◽  
et al.

Table S1: U-Pb LA-ICP-MS data for zircons from granulite and amphibolite. Table S2: U-Pb LA-ICP-MS data for zircons from metapelite and metapsammite. Table S3: Zircon trace-element compositions from granulite and amphibolite. Table S4: Hf isotopic compositions for zircons from granulite and amphibolite.


2021 ◽  
Author(s):  
Cailey Condit ◽  
Victor Guevara ◽  
Melodie French ◽  
Adam Holt ◽  
Jonathan Delph

&lt;p&gt;Feedbacks amongst petrologic and mechanical processes along the subduction plate boundary play a central role influencing slip behaviors and deformation styles. Metamorphic reactions, resultant fluid production, deformation mechanisms, and strength are strongly temperature dependent, making the thermal structure of these zones a key control on slip behaviors.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Firstly, we investigate the role of metamorphic devolatilization reactions in the production of Episodic Tremor and Slip (ETS) in warm subduction zones. Geophysical and geologic observations of ETS hosting subduction zones suggest the plate interface is fluid-rich and critically stressed, which together, suggests that this area is a zone of near lithostatic pore fluid pressure. &amp;#160;Fluids and high pore fluid pressures have been invoked in many models for ETS. However, whether these fluids are sourced from local dehydration reactions in particular lithologies, or via up-dip transport from greater depths remains an open question. We present thermodynamic models of the petrologic evolution of four lithologies typical of the plate interface along predicted pressure&amp;#8211;temperature (P-T) paths for the plate boundary along Cascadia, Nankai, and Mexico which all exhibit ETS at depths between 25-65 km. Our models suggest that 1-2 wt% H&lt;sub&gt;2&lt;/sub&gt;O is released at the depths of ETS along these subduction segments due to punctuated dehydration reactions within MORB, primarily through chlorite and/or lawsonite breakdown. These reactions produce sufficient in-situ fluid across this narrow P-T range to cause high pore fluid pressures. Punctuated dehydration of oceanic crust provides the dominant source of fluids at the base of the seismogenic zone in these warm subduction margins, and up-dip migration of fluids from deeper in the subduction zone is not required to produce ETS-facilitating high pore fluid pressures. These dehydration reactions not only produce metamorphic fluids at these depths, but also result in an increased strength of viscous deformation through the breakdown of weak hydrous phases (e.g., chlorite, glaucophane) and the growth of stronger minerals (e.g., garnet, omphacite, Ca-amphibole). Lastly, we present preliminary data on viscosity along warm subduction paths showing the locations of these dehydration pulses correlate with viscosity increases in mafic lithologies along the shallow forarc.&lt;/p&gt;


Author(s):  
Fernando Barrio-Parra ◽  
Miguel Izquierdo-Díaz ◽  
Luis Jesús Fernández-Gutiérrez del Álamo ◽  
Bárbara Biosca ◽  
Eduardo De Miguel

An openly accessible cellular automaton has been developed to predict the preferential migration pathways of contaminants by surface runoff in abandoned mining areas. The site where the validation of the results of the Contaminant Mass Transfer Cellular Automaton (CMTCA) has been carried out is situated on the steep flank of a valley in the Spanish northwestern region of Asturias, at the foot of which there is a village with 400 inhabitants, bordered by a stream that flows into a larger river just outside the village. Soil samples were collected from the steep valley flank where the mine adits and spoil heaps are situated, at the foot of the valley, and in the village, including private orchards. Water and sediment samples were also collected from both surface water courses. The concentration of 12 elements, including those associated with the Cu-Co-Ni ore, were analyzed by ICP-OES (Perkin Elmer Optima 3300DV, Waltham, MA, USA) and ICP-MS (Perkin Elmer NexION 2000, Waltham, MA, USA). The spatial representation of the model’s results revealed that those areas most likely to be crossed by soil material coming from source zones according to the CMTCA exhibited higher pollution indexes than the rest. The model also predicted where the probabilities of soil mass transfer into the stream were highest. The accuracy of this prediction was corroborated by the results of trace element concentrations in stream sediments, which, for elements associated with the mineral paragenesis (i.e., Cu, Co, Ni, and also As), increased between five- and nine-fold downstream from the predicted main transfer point. Lastly, the river into which the stream discharges is also affected by the mobilization of mined materials, as evidenced by an increase of up to 700% (in the case of Cu), between dissolved concentrations of those same elements upstream and downstream of the confluence of the river and the stream.


2021 ◽  
Vol 261 ◽  
pp. 03058
Author(s):  
Fengyu Sun ◽  
Gaoshe Cao ◽  
Qikai Zhou

The bauxite layer in Western Henan supplies a large number of bauxite ores and is useful for studying tectonic movement. In this paper, the bauxite samples were selected to carry out LA-ICP-MS detrital zircons U-Pb dating and Hf isotope testing. The results indicated that the detrital zircons with the Early Paleozoic ages were mainly derived from the North Qinling Orogenic Belt. The detrital zircons of the Precambrian age may be derived mainly from the basement of the North China Block and the North Qinling Orogenic Belt. The results of this study support the opinion that the North Qinling Orogenic Belt has been uplifted at ~310 Ma, and the surface of the southern craton has an overall north-dipping topography at this time.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1032
Author(s):  
Pei Zan ◽  
Shouyu Chen ◽  
Jinduo Chen ◽  
Shengli Li

This study discussed the pertrological classification, geochronology, petrogenesis and tectonic evolution of early Paleozoic granites from the Xingshuping gold deposit in the East Qinling orogenic belt. In order to achieve this target, we carried out an integrated study of zircon U–Pb age, whole-rock major and trace elements, as well as Sr–Nd–Hf isotope compositions for the Xingshuping granites (part of the Wuduoshan pluton) from the Erlangping unit. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating constrains the emplacement age of the Xingshuping granites at 446.2 ± 1.2 Ma. The rocks at Xingshuping can be divided into two types: mainly biotite granite and monzonitic granite. The biotite granites are typical adakitic rocks, while the monzonitic granites show characteristics similar to normal arc volcanic rocks. The geochemical compositions reveal that they were derived from a clay-rich, plagioclase-rich and biotite-rich psammitic lower continental crust source, with contributions of mantle-derived magmas. The distinction is that the biotite granites were primarily derived from partial melting in a syn-collision extension setting, whereas the monzonitic granite went through a fractional crystallization process in an intraplate anorogenic setting.


Sign in / Sign up

Export Citation Format

Share Document