Spatio-temporal slip rate variability of the Doruneh fault (eastern Iran) from dense GNSS and SENTINEL data and a tectonic study

Author(s):  
Andrea Walpersdorf ◽  
Fatemeh Khorrami ◽  
Zahra Mousavi ◽  
Erwan Pathier ◽  
Farokh Tavakoli ◽  
...  

<p>The recent activity of the 600 km long E-W trending Doruneh fault in eastern Iran is attested by clear geomorphological features along its trace, while no instrumental earthquake can be related to this fault. The only two Mw7 events in this area took place on the Dasht-e Bayaz fault, south of Doruneh. The great length of the fault, the lack of the seismicity and the active regional N-S shortening induced by the Arabian-Eurasian convergence highlight the seismic potential of the Doruneh fault. However, until today, the short- and long-term slip rate estimates of the Doruneh fault remain controversial. Geomorphological offset dating indicates long-term slip rates between 2.5 mm/yr and 8.2 mm/yr. Preliminary GNSS measurements and local InSAR data reveal rates between 1 and 5 mm/yr.  This wide range of slip rate estimates suggests either temporal or spatial variability of the Doruneh fault activity.</p><p>To investigate the along-strike slip variability of the Doruneh fault, a dense GNSS survey including 18 sites has been conducted in 2012 and 2018. This network completes the 17 regional permanent GNSS stations. Combining campaign and permanent data, the horizontal GNSS velocity field constrains the slip velocity and its variability along the fault by complementary approaches, on profiles perpendicular to the fault, and by a rigid block model. Sinistral motion is maximal in the western part of the fault (1 to 4 mm/yr), and decreasing towards the east. A complementary InSAR velocity map based on Sentinel-1 images between 2014 and 2019 exploits two ascending tracks (A159 and A86) across the Doruneh fault. We followed the SBAS time series analysis approach and corrected the effects of annual loading cycles and tropospheric delay. Sand and unexpected large tropospheric effects prohibited correlation in some places, but a coherent mean velocity map in line of sight (LOS) direction to the satellites is obtained for most of our study area. This map shows no sharp variations along the fault trace that could indicate shallow fault creep. The clearest signals are zones of anthropogenic subsidence. Looking for a long-wavelength tectonic signal (less than 3 mm/yr spread over 100 km), we masked these areas of rapid and short-wavelength deformation. The resulting velocity maps for both tracks are projected on profiles perpendicular to the fault and indicate a long-wavelength signal across the Doruneh fault of less than 2 mm/yr in LOS direction. A systematic parameter search yields a first best fit on track A159 combining a horizontal slip rate of 3.25 mm/yr with a locking depth of 8 km in the western part of the fault. This approach will be pursued on track A86, covering the eastern part, after more thorough cleaning.</p><p>We finally compare the combined GNSS-InSAR present-day fault slip rates to new long-term slip rates from geomorphological offset dating, to evaluate the time variability of the Doruneh fault activity. Our multi-disciplinary study will enhance our understanding of the Doruneh fault mechanism and its role in the kinematics of the Arabia-Eurasia collision, and contribute to a better seismic hazard assessment in eastern Iran.</p>

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 538
Author(s):  
Malal Kane ◽  
Ebrahim Riahi ◽  
Minh-Tan Do

This paper deals with the modeling of rolling resistance and the analysis of the effect of pavement texture. The Rolling Resistance Model (RRM) is a simplification of the no-slip rate of the Dynamic Friction Model (DFM) based on modeling tire/road contact and is intended to predict the tire/pavement friction at all slip rates. The experimental validation of this approach was performed using a machine simulating tires rolling on road surfaces. The tested pavement surfaces have a wide range of textures from smooth to macro-micro-rough, thus covering all the surfaces likely to be encountered on the roads. A comparison between the experimental rolling resistances and those predicted by the model shows a good correlation, with an R2 exceeding 0.8. A good correlation between the MPD (mean profile depth) of the surfaces and the rolling resistance is also shown. It is also noticed that a random distribution and pointed shape of the summits may also be an inconvenience concerning rolling resistance, thus leading to the conclusion that beyond the macrotexture, the positivity of the texture should also be taken into account. A possible simplification of the model by neglecting the damping part in the constitutive model of the rubber is also noted.


2006 ◽  
Vol 20 (03) ◽  
pp. 261-276 ◽  
Author(s):  
RALF HETZEL ◽  
ANDREA HAMPEL

Seismic hazard evaluations on major faults in Earth's crust are based on their slip histories, which reflect the frequency of earthquakes that ruptured a fault in the past. On a 100 000-year timescale, the slip rate of a fault can be determined by dating geomorphic surfaces that are offset by a fault. Application of this method to alluvial fan surfaces and river terraces offset by thrust faults in Tibet yields long-term slip rates of less than 1mm/a. Slip rates on a 10 000-year timescale are derived from paleoseismologic data and document that faults experience considerable slip rate variations on timescales of 100 to 1000 years. In particular, slip rates are often considerable higher in the present interglacial, the Holocene, than during the last glacial period, the Late Pleistocene. The causes of this behavior have remained enigmatic but their assessment is essential for an accurate evaluation of a fault's past and future seismicity. Numerical experiments show that the retreat of lakes and glaciers at the end of the last glacial period can cause an increase in the Holocene slip rate of a fault. Such a correlation between enhanced seismicity and climate-driven mass fluctuations on Earth's surface is best documented for the Wasatch Fault, Utah.


2020 ◽  
Author(s):  
Fateme Khorrami ◽  
Andrea Walpersdorf ◽  
Zahra Mousavi ◽  
Erwan Pathier ◽  
Hamid Nankali ◽  
...  

<p>The enigmatic 600 km long E-W trending left-lateral Doruneh fault in eastern Iran is certified to be active by its well preserved geomorphological features all along its trace, but it is lacking recent seismic activity that could be attributed to its motion. Instead, the high seismogenic potential of the study zone is highlighted by the two M=7 earthquakes on the left-lateral E-W trending Dasht-e-Bayaz fault just south of Doruneh, in 1968 and 1979. Therefore, it remains important to understand the role of the Doruneh fault in the kinematics of the Arabia-Eurasia collision that takes place inside Iran’s political boundaries.</p><p>Many different slip-rates have been estimated for the left-lateral motion of the Doruneh fault: 2.5 mm/yr by geomorphological marker offset dating, 1 mm/yr from preliminary GNSS measurements, and 5 mm/yr from a local InSAR study.  These rather local estimates on the 600 km long fault highlight either temporal or spatial variability of the Doruneh present-day behavior. The spatial variability of the fault slip is still badly constraint as the western half of the fault is located in the Great Kavir desert. The analysis of satellite radar images was supposed to provide good constraints on the inter-seismic deformation with a full spatial coverage of the fault, especially thanks to the favorable E-W orientation of the Doruneh fault and the arid Iranian climate. However, decorrelation due to sand dunes and unexpected large tropospheric noise prohibited precise results from a first large-scale ENVISAT study, yielding an upper limit of the slip rate of 4 mm/yr. The high resolution SENTINEL-1 constellation (operational since 2014) is predicted to provide constraints on inter-seismic velocities down to 2 mm/yr from 2020 on. In complement, a dense GNSS survey has been conducted in 2012 and 2018 on a temporary network of 18 sites around a large part of the fault. This network densifies and completes the 17 permanent GNSS stations in up to 200 km distance to the fault trace situated mostly in the eastern, more populated part of the fault.</p><p>In this work, we will point out our recent GNSS, InSAR and tectonic studies on the present-day characteristics of the Doruneh fault, to better understand the mechanism of this major fault in the kinematics of the Arabia-Eurasia collision, and to contribute to a better assessment of the seismic hazard in eastern Iran.</p>


2009 ◽  
Vol 72 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Alan L. Mayo ◽  
Jiri Bruthans ◽  
David Tingey ◽  
Jaroslav Kadlec ◽  
Steve Nelson

AbstractTimpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate (∼ 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate (∼ 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate (∼ 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be ∼ 0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of ∼ 50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.


Author(s):  
Elaine K. Young ◽  
Eric Cowgill ◽  
Katherine M. Scharer ◽  
Emery O. Anderson-Merritt ◽  
Amanda Keen-Zebert ◽  
...  

ABSTRACT The geologic slip rate on the Mojave section of the San Andreas fault is poorly constrained, despite its importance for understanding earthquake hazard, apparent discrepancies between geologic and geodetic slip rates along this fault section, and long-term fault interactions in southern California. Here, we use surficial geologic mapping, excavations, and radiocarbon and luminescence dating to quantify the displacements and ages of late Holocene landforms offset by the fault at three sites. At the Ranch Center site, the slip rate is determined using the base of a fan marking incision and deflection of an ephemeral channel. At the adjacent Key Slide site, the margin of a landslide deposited on indigenous fire hearths provides a minimum rate. At the X-12 site, the slip rate is determined from a channel that incised into a broad fan surface, and is deflected and beheaded by the fault. We use maximum–minimum bounds on both the displacement and age of each offset feature to calculate slip rate for each site independently. Overlap of the three independent rate ranges yields a rate of 33–39 mm/yr over the last 3 ka, under the assumption that the sites share a common history, given their proximity. Considered in sequence, site-level epistemic uncertainties in the data permit but do not require a rate increase since ∼1200 cal B.P. Modest rate changes can be explained by aleatory variability in earthquake timing and magnitude; larger changes could suggest a shared regional variation with the Garlock and other faults. The new late Holocene slip rates are consistent with geodetic model estimates that include a viscoelastic crust and earthquake cycle effects. The geologic slip rates also provide average slip over dozens of earthquake cycles—a key constraint for long-term earthquake rupture forecasts.


2020 ◽  
Author(s):  
Li-Yang Hsiao ◽  
Wu-Lung Chang

<p>Due to the rapid convergence of Philippine Sea Plate toward the continental margin of Eurasian Plate, the southern Taiwan has a high number of 8 active faults published by the Taiwan Central Geological Survey. We inverted the Global Positioning System (GPS) velocity measurements to investigate the slip rates on these faults and how these values could change with time, especially before and after large seismic events. In this study we employed TDEFNODE to first evaluate two fault-slip models before and after the 2016 Mw 6.4 Meinong earthquake within the periods of 2002 to 2016 (model 1) and 2016 to 2018 (model 2). Our results from these two models show that some long-term average fault slip rates were changed with time, such as the Zuozhen, Chishan and Hengchun faults that have values 30.2, 27.0 and 29.7 mm/yr in 2002-2016 and 15.2, 6.6 and 14.2 mm/yr in 2016-2018, respectively. In addition, we focused on the Mw 7.0 and Mw 6.9 2006 Hengchun doublet earthquakes by integrating the Permanent Scattered Interferometric Synthetic Aperture Radar (PS-InSAR) data collected by ALOS from 2007 to 2011 with the GPS velocities for a joint inversion for fault slip model (model 3). The results show that the average long-term slip rates of the Chishan and Hengchun faults are 12.5 and 16.8 mm/yr, respectively, which are significantly lower than the rates of 2002-2016 (model 1). More fault models with different time spans are on the way to affirm these temporal rate changes and explore their implications on earthquake hazard analysis.</p>


2020 ◽  
pp. 66-73
Author(s):  
A. Simonova ◽  
S. Chudakov ◽  
R. Gorenkov ◽  
V. Egorov ◽  
A. Gostry ◽  
...  

The article summarizes the long-term experience of practical application of domestic breakthrough technologies of preventive personalized medicine for laboratory diagnostics of a wide range of socially significant non-infectious diseases. Conceptual approaches to the formation of an integrated program for early detection and prevention of civilization diseases based on these technologies are given. A vision of the prospects for the development of this area in domestic and foreign medicine has been formed.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


2017 ◽  
Vol 68 (3) ◽  
pp. 599-601
Author(s):  
Dan Paul Stefanescu ◽  
Oana Roxana Chivu ◽  
Claudiu Babis ◽  
Augustin Semenescu ◽  
Alina Gligor

Any economic activity carried out by an organization, can generate a wide range of environmental implications. Particularly important, must be considered the activities that have a significant negative effect on the environment, meaning those which pollute. Being known the harmful effects of pollution on the human health, the paper presents two models of utmost importance, one of the material environment-economy interactions balance and the other of the material flows between environmental factors and socio-economic activities. The study of these models enable specific conditions that must be satisfied for the economic processes friendly coexist to the environment for long term, meaning to have a minimal impact in that the residues resulting from the economic activity of the organization to be as less harmful to the environment.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 436E-436
Author(s):  
Martin P.N. Gent

The persistence of effects of paclobutrazol or uniconazol on stem elongation was determined for several years after large-leaf Rhododendron and Kalmia latifolia were treated with a single-spray application of these triazol growth-regulator chemicals. Potted plants were treated in the second year from propagation, and transplanted into the field in the following spring. The elongation of stems was measured in the year of application and in the following 2 to 4 years. Treatments with a wide range of doses were applied in 1991, 1992, or 1995. For all except the most-dilute applications, stem elongation was retarded in the year following application. At the highest doses, stem growth was inhibited 2 years following application. The results could be explained by a model of growth regulator action that assumed stem elongation was inversely related to amount of growth regulator applied. The dose response coefficient for paclobutrazol was less than that for uniconazol. The dose that inhibited stem elongation one-half as much as a saturating dose was about 0.5 and 0.05 mg/plant, for paclobutrazol and uniconazol, respectively. The dose response coefficient decreased exponentially with time after application, with an exponential time constant of about 2/year. The model predicted a dose of growth regulator that inhibited 0.9 of stem elongation immediately after application would continue to inhibit 0.5 of stem elongation in the following year.


Sign in / Sign up

Export Citation Format

Share Document