Inter-decadal Change of Tibetan Plateau Vortices during the past four Decades and its Possible Mechanism

Author(s):  
Zhiqiang Lin ◽  
Weidong Guo ◽  
Xiuping Yao ◽  
Jun Du ◽  
Jun Ge

<p>The Tibetan Plateau vortices (TPVs) are mesoscale weather systems active at the near-surface of the Tibetan Plateau (TP), which are one of the major precipitation-producing systems over the TP and its surrounding areas. TPVs mainly occur in the warm season from May to September. In this paper, we investigate the inter-decadal change of TPVs in the warm seasons of 1979–2017 by analyzing five widely used reanalysis datasets. A significant change of the TPVs’ frequency appears around the mid-1990s, associated with less TPVs during 1979–1996 and more TPVs during 1997–2017. The abrupt change is caused by a transition of the Atlantic Multi-decadal Oscillation (AMO) from a cold phase to a warm phase in the mid-1990s. The shift of AMO leads to a silk-road pattern wave train and a spatially asymmetric change of tropospheric temperature. It modifies the intensity of the subtropical westerly jet and the TP heating, leading to the inter-decadal change of TPV activities.</p>

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jiali Luo ◽  
Wenjun Liang ◽  
Pingping Xu ◽  
Haiyang Xue ◽  
Min Zhang ◽  
...  

Tropopause fold is the primary mechanism for stratosphere-troposphere exchange (STE) at the midlatitudes. Investigation of the features of tropopause folds over the Tibetan Plateau (TP) is important since the TP is a hotspot in global STE. In this study, we investigated seasonal features of the tropopause fold events over the TP using the 40-year ERA-Interim reanalysis data. The development of a tropopause folding case is specifically examined. The results show that shallow tropopause folds occur mostly in spring, while medium and deep folds occur mostly in winter. The multiyear mean monthly frequency of shallow tropopause folds over the TP reaches its maximum value of about 7% in May and then decreases gradually to its minimum value of 1% in August and increases again since September. Deep folds rarely occur in summer and autumn. Both the seasonal cycle and seasonal distribution of total tropopause folds over the TP are dominated by shallow folds. The relative high-frequency areas of medium and deep folds are located over the southern edge of the TP. The westerly jet movement controls the displacement of the high-frequency folding region over the TP. The region of high-frequency tropopause folds is located in the southern portion of the plateau in spring and moves northward in summer. The jet migrates back to the south in autumn and is located along about 30°N in winter, and the region where folds occur most frequently also shifts southward correspondingly. A medium fold event that occurred on 29 December 2018 is used to demonstrate the evolution of a tropopause fold case over the TP in winter; that is, the folding structure moves from west to east, the tropopause pressure is greater than 320 hPa over the folding region, while it is about 200 hPa in the surrounding areas, and the stratospheric air with high potential vorticity (PV) is transported from the high latitudes to the plateau by meridional winds. A trajectory model result verifies the transport pathway of the air parcels during the intrusion event.


2020 ◽  
Vol 33 (19) ◽  
pp. 8507-8522 ◽  
Author(s):  
Jing Sun ◽  
Kun Yang ◽  
Weidong Guo ◽  
Yan Wang ◽  
Jie He ◽  
...  

AbstractThe Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the wetting process are analyzed for 1979–2018. These analyses show that the wetting is associated with simultaneously weakened westerlies over the Tibetan Plateau (TP). The latter is further significantly correlated with the Atlantic multidecadal oscillation (AMO) on interdecadal time scales. The AMO has been in a positive phase (warm anomaly of the North Atlantic Ocean sea surface) since the mid-1990s, which has led to both a northward shift and weakening of the subtropical westerly jet stream at 200 hPa near the TP through a wave train of cyclonic and anticyclonic anomalies over Eurasia. These anomalies are characterized by an anomalous anticyclone to the east of the ITP and an anomalous cyclone to the west of the ITP. The former weakens the westerly winds, trapping water vapor over the ITP while the latter facilitates water vapor intruding from the Arabian Sea into the ITP. Accordingly, summer precipitation over the ITP has increased since the mid-1990s.


2014 ◽  
Vol 18 (4) ◽  
pp. 1323-1337 ◽  
Author(s):  
R. van der Velde ◽  
M. S. Salama ◽  
T. Pellarin ◽  
M. Ofwono ◽  
Y. Ma ◽  
...  

Abstract. This paper discusses soil moisture retrievals over the Tibetan Plateau from brightness temperature (TB's) observed by the Special Sensor Microwave Imagers (SSM/I's) during the warm seasons of the period from July 1987 to December 2008. The Fundamental Climate Data Record (FCDR) of F08, F11 and F13 SSM/I satellites by the Precipitation Research Group of Colorado State University is used for this study. A soil moisture retrieval algorithm is developed based on a radiative transfer model that simulates top-of-atmosphere TB's whereby effects of atmosphere are calculated from near-surface forcings obtained from a bias-corrected dataset. Validation of SSM/I retrievals against in situ measurements for a two-and-half year period (225 matchups) gives a Root Mean Squared Error of 0.046 m3 m−3. The agreement between retrievals and Noah simulations from the Global Land Data Assimilation System is investigated to further provide confidence in the reliability of SSM/I retrievals at the Plateau-scale. Normalised soil moisture anomalies (N) are computed on a warm seasonal (May–October) and on a monthly basis to analyse the trends present within the products available from July 1987 to December 2008. The slope of linear regression functions between N and time is used to quantify the trends. Both the warm season and monthly N indicate severe wettings of 0.8 to almost 1.6 decade−1 in the centre of the Plateau. Correlations are found by the trend with elevation for the warm season as a whole and the individual months May, September and October. The observed wetting of the Tibetan Plateau agrees with recent findings on permafrost retreat, precipitation increase and potential evapotranspiration decline.


2020 ◽  
Author(s):  
Julia Curio ◽  
Reinhard Schiemann ◽  
Kevin Hodges ◽  
Andrew Turner ◽  
Nicholas Klingaman

<p>The Tibetan Plateau (TP) and surrounding high mountains constitute an important forcing of the atmospheric circulation due to their height and extent, and thereby impact weather and climate in East Asia. Mesoscale Tibetan Plateau Vortices (TPVs) form over the TP and are one of the major systems generating TP precipitation. The majority of TPVs remain on the TP throughout their lifetime, while a fraction moves east off the TP. These “moving-off” TPVs can trigger extreme precipitation and severe flooding over large parts of eastern and southern China, for example in Sichuan province and the Yangtze River valley. Due to their potentially severe impacts downstream of the TP, it is first important to understand the conditions under which TPVs can move east off the TP.</p><p>In this study, we examine the vertical and horizontal structure of TPVs moving off the TP in contrast to those that do not using reanalysis in order to understand which local and/or large-scale atmospheric conditions lead TPVs to move off the TP. We use composites of atmospheric fields at different stages of the TPV lifecycle (e.g. genesis, maximum intensity, and maximum precipitation) and at different locations over and downstream of the TP, to account for the heterogeneous topography. Preliminary results suggest that the large-scale background flow, characterised by the strength and position of the subtropical westerly jet, is one of the factors determining whether a TPV moves off the TP or not.</p><p>Another important question is how and where moving-off TPVs trigger precipitation. Do TPVs transport moisture from the TP to the downstream regions? Do they move off while already precipitating? Do they trigger precipitation dynamically east of the TP? Results from a case study suggest that the TPV triggers precipitation as it moves over the edge of the TP, which then stays locked to the orography while the system is moving further east. The TPV appears to change the local atmospheric circulation in the Sichuan basin while moving off, thereby directing a flow of moist air towards the eastern slope of the TP.</p><p>Understanding how the combination of the right large-scale atmospheric conditions and a TPV-induced change in the local circulation downstream of the TP can create an impactful TPV may enable improved forecasts of TPVs and their impacts in the densely populated regions downstream of the TP.</p>


2014 ◽  
Vol 10 (1) ◽  
pp. 91-106 ◽  
Author(s):  
E. Dietze ◽  
F. Maussion ◽  
M. Ahlborn ◽  
B. Diekmann ◽  
K. Hartmann ◽  
...  

Abstract. Grain-size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy, this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain-size end-member modelling analysis. Between three and five robust grain-size end-member subpopulations were distinguished at different sites from similarly–likely end-member model runs. Their main modes were grouped and linked to common sediment transport and depositional processes that can be associated with contemporary Tibetan climate (precipitation patterns and lake ice phenology, gridded wind and shear stress data from the High Asia Reanalysis) and local catchment configurations. The coarse sands and clays with grain-size modes >250 μm and <2 μm were probably transported by fluvial processes. Aeolian sands (~200 μm) and coarse local dust (~60 μm), transported by saltation and in near-surface suspension clouds, are probably related to occasional westerly storms in winter and spring. Coarse regional dust with modes ~25 μm may derive from near-by sources that keep in longer term suspension. The continuous background dust is differentiated into two robust end members (modes: 5–10 and 2–5 μm) that may represent different sources, wind directions and/or sediment trapping dynamics from long-range, upper-level westerly and episodic northerly wind transport. According to this study grain-size end members of only fluvial origin contribute small amounts to mean Tibetan lake sedimentation (19± 5%), whereas local to regional aeolian transport and background dust deposition dominate the clastic sedimentation in Tibetan lakes (contributions: 42 ± 14% and 51 ± 11%). However, fluvial and alluvial reworking of aeolian material from nearby slopes during summer seems to limit end-member interpretation and should be crosschecked with other proxy information. If not considered as a stand-alone proxy, a high transferability to other regions and sediment archives allows helpful reconstructions of past sedimentation history.


2018 ◽  
Vol 52 (7-8) ◽  
pp. 4849-4859 ◽  
Author(s):  
Lun Li ◽  
Renhe Zhang ◽  
Min Wen ◽  
Jianping Duan

2017 ◽  
Vol 30 (24) ◽  
pp. 9965-9977 ◽  
Author(s):  
Ge Liu ◽  
Ping Zhao ◽  
Junming Chen

The summer (June–August) Asian–Pacific Oscillation (APO), a large-scale atmospheric teleconnection pattern, is closely associated with climate anomalies over the Northern Hemisphere. Using the NOAA/CIRES twentieth-century reanalysis, the ECMWF twentieth-century atmospheric reanalysis, and the NCEP reanalysis, this study investigates the variability of the summer APO on the interannual time scale and its relationship with the thermal condition over the Tibetan Plateau (TP). The results show that the interannual variability of the APO is steadily related to the summer TP surface air temperature during the last 100 years. Observation and simulation further show that a positive heating anomaly over the TP can increase the upper-tropospheric temperature and upward motion over Asia. This anomalous upward flow moves northward in the upper troposphere, and then turns and moves eastward, before finally descending over the mid- to high latitudes of the central-eastern North Pacific, concurrently accompanied by anomalous upward motion over the lower latitudes of the central-eastern North Pacific. The anomalous downward and upward motions over the central-eastern North Pacific reduce the in situ mid- and upper-tropospheric temperature, mainly through modulating condensation latent heat from precipitation and/or dry adiabatic heat, which ultimately leads to the interannual variability of the summer APO. In this process, the zonal vertical circulation over the extratropical Asian–North Pacific sector plays an important bridging role.


2021 ◽  
Vol 13 (21) ◽  
pp. 4289
Author(s):  
Yang Li ◽  
Yubao Liu ◽  
Yun Chen ◽  
Baojun Chen ◽  
Xin Zhang ◽  
...  

The spatiotemporal statistical characteristics of warm-season deep convective systems, particularly deep convective systems initiation (DCSI), over China and its vicinity are investigated using Himawari-8 geostationary satellite measurements collected during April-September from 2016 to 2020. Based on a satellite brightness temperature multiple-threshold convection identification and tracking method, a total of 47593 deep convective systems with lifetimes of at least 3 h were identified in the region. There are three outstanding local maxima in the region, located in the southwestern, central and eastern Tibetan Plateau and Yunnan-Guizhou Plateau, followed by a region of high convective activities in South China. Most convective systems are developed over the Tibetan Plateau, predominantly eastward-moving, while those developed in Yunnan-Guizhou Plateau and South China mostly move westward and southwestward. The DSCI occurrences become extremely active after the onset of the summer monsoon and tend to reach a maximum in July and August, with a diurnal peak at 11–13 LST in response to the enhanced solar heating and monsoon flows. Several DCSI hotspots are identified in the regions of inland mountains, tropical islands and coastal mountains during daytime, but in basins, plains and coastal areas during nighttime. DCSI over land and oceans exhibits significantly different sub-seasonal and diurnal variations. Oceanic DCSI has an ambiguous diurnal variation, although its sub-seasonal variation is similar to that over land. It is demonstrated that the high spatiotemporal resolution satellite dataset provides rich information for understanding the convective systems over China and vicinity, particularly the complex terrain and oceans where radar observations are sparse or none, which will help to improve the convective systems and initiation nowcasting.


Sign in / Sign up

Export Citation Format

Share Document