scholarly journals Comparison of monsoon variations over groundwater hydrochemistry changes in small Tropical Island and its repercussion on quality

2014 ◽  
Vol 11 (6) ◽  
pp. 6405-6440 ◽  
Author(s):  
N. M. Isa ◽  
A. Z. Aris ◽  
W. N. A. Wan Sulaiman ◽  
A. P. Lim ◽  
L. J. Looi

Abstract. Study on the spatial and temporal distribution of groundwater hydrochemistry in the small tropical islands is important as their insular character may expose the groundwater aquifer to too many sources of pollution, especially salinization. A total of 216 groundwater samples were collected from the monitoring boreholes during two different monsoon seasons; pre- and post-monsoon. As overall, data of groundwater concentration illustrated a trend of Ca > Na > Mg > K and HCO3 > Cl > SO4 dominations with the major finding of two different groundwater types. Pre-monsoon reported Na-HCO3 and Ca-HCO3 types while post-monsoon were only dominated by the Ca-HCO3 type. The statistical analysis shows the in situ parameters (Temp, pH, EC, Salinity, DO, TDS and Eh) and major ions (Ca, Mg, Na, K, HCO3, Cl and SO4) were strongly correlated with the monsoon changes (p < 0.01). From the analysis, its reveals that the seasonal changes have significantly affects the groundwater composition. While, the analytical calculations of the ionic ratio (Na vs. Cl; Cl/HCO3 vs. Cl; Ca + Mg vs. SO4 + HCO3) describes the groundwater is influenced by the cation exchanges processes, simple mixing and water–rock interaction. Saturation indices of carbonate minerals shows strong correlationship (p < 0.01) with Ca constituent indicating solubility on minerals, which led to dissolution or precipitation condition of water. Results of present study contribute to a better understanding of a complex groundwater system and the hydrochemical processes related.

Author(s):  
Nur Fatihah Mohamad Zainol ◽  
Azim Haziq Zainuddin ◽  
Ley Juen Looi ◽  
Ahmad Zaharin Aris ◽  
Noorain Mohd Isa ◽  
...  

Rapid urbanization and industrial development in the Langat Basin has disturbed the groundwater quality. The populations’ reliance on groundwater sources may induce possible risks to human health such as cancer and endocrine dysfunction. This study aims to determine the groundwater quality of an urbanized basin through 24 studied hydrochemical parameters from 45 groundwater samples obtained from 15 different sampling stations by employing integrated multivariate analysis. The abundance of the major ions was in the following order: bicarbonate (HCO3−) > chloride (Cl−) > sodium (Na+) > sulphate (SO42−) > calcium (Ca2+) > potassium (K+) > magnesium (Mg2+). Heavy metal dominance was in the following order: Fe > Mn > Zn > As > Hg > Pb > Ni > Cu > Cd > Se > Sr. Classification of the groundwater facies indicated that the studied groundwater belongs to the Na-Cl with saline water type and Na-HCO3 with mix water type characteristics. The saline water type characteristics are derived from agricultural activities, while the mixed water types occur from water–rock interaction. Multivariate analysis performance suggests that industrial, agricultural, and weathering activities have contributed to groundwater contamination. The study will help in the understanding of the groundwater quality issue and serve as a reference for other basins with similar characteristics.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 857
Author(s):  
Maria-Alexandra Hoaghia ◽  
Ana Moldovan ◽  
Eniko Kovacs ◽  
Ionut Cornel Mirea ◽  
Marius Kenesz ◽  
...  

Human activities and natural factors determine the hydrogeochemical characteristics of karst groundwaters and their use as drinking water. This study assesses the hydrogeochemical characteristics of 14 karst water sources in the Apuseni Mountains (NW Romania) and their potential use as drinking water sources. As shown by the Durov and by the Piper diagrams, the chemical composition of the waters is typical of karst waters as it is dominated by HCO3− and Ca2+, having a circumneutral to alkaline pH and total dissolved solids ranging between 131 and 1092 mg L−1. The relation between the major ions revealed that dissolution is the main process contributing to the water chemistry. Limestone and dolostone are the main Ca and Mg sources, while halite is the main Na and Cl source. The Gibbs diagram confirmed the rock dominance of the water chemistry. The groundwater quality index (GWQI) showed that the waters are of excellent quality, except for two waters that displayed medium and good quality status. The quality of the studied karst waters is influenced by the geological characteristics, mainly by the water–rock interaction and, to a more limited extent, by anthropogenic activities. The investigated karst waters could be exploited as drinking water resources in the study area. The results of the present study highlight the importance of karst waters in the context of good-quality water shortage but also the vulnerability of this resource to anthropogenic influences.


2013 ◽  
Vol 17 (7) ◽  
pp. 2917-2928 ◽  
Author(s):  
G. Mongelli ◽  
S. Monni ◽  
G. Oggiano ◽  
M. Paternoster ◽  
R. Sinisi

Abstract. Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are meteoric in origin. A significant consequence of the meteoric origin of the Na-Cl-type water studied here is that the Br / Cl ratio, extensively used to assess the origin of salinity in fresh water, should be used with care in carbonate aquifers that are near the coast. Overall, δ34S and δ18O levels in dissolved SO4 suggest that water–rock interaction is responsible for the Na-Cl brackish composition of the water hosted by the Jurassic and Triassic aquifers of the Nurra, and this is consistent with the geology and lithological features of the study area. Evaporite dissolution may also explain the high Cl content, as halite was detected within the gypsum deposits. Finally, these Na-Cl brackish waters are undersaturated with respect to the more soluble salts, implying that in a climate evolving toward semi-arid conditions, the salinization process could intensify dramatically in the near future.


2020 ◽  
Vol 69 (4) ◽  
pp. 398-414 ◽  
Author(s):  
Vasant Wagh ◽  
Shrikant Mukate ◽  
Aniket Muley ◽  
Ajaykumar Kadam ◽  
Dipak Panaskar ◽  
...  

Abstract The integration of pollution index of groundwater (PIG), multivariate statistical techniques including correlation matrix (CM), principal component analysis (PCA), cluster analysis (CA) and various ionic plots was applied to elucidate the influence of natural and anthropogenic inputs on groundwater chemistry and quality of the Kadava river basin. A total of 80 groundwater samples were collected and analysed for major ions during pre- and post-monsoon seasons of 2012. Analytical results inferred that Ca, Mg, Cl, SO4 and NO3 surpass the desirable limit (DL) and permissible limit (PL) of Bureau of Indian Standards (BIS) and the World Health Organization (WHO) in both the seasons. The elevated content of total dissolved solids (TDS), Cl, SO4, Mg, Na and NO3 is influenced by precipitation and agricultural dominance. PIG results inferred that 52.5 and 35%, 30 and 37.5%, 12.5 and 20%, 2.5 and 5% groundwater samples fall in insignificant, low, moderate and high pollution category (PC) in pre- and post-monsoon seasons, respectively. PC 1 confirms salinity controlled process due to high inputs of TDS, Ca, Mg, Na, Cl and SO4. Also, PC 2 suggests alkalinity influence by pH, CO3, HCO3 and F content. PIG and statistical techniques help to interpret the water quality data in an easier way.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1856
Author(s):  
Tianding Han ◽  
Yuping Li ◽  
Jia Qin ◽  
Xiangying Li ◽  
Qin Yang ◽  
...  

In order to detect the source and controlling factors of hydrochemical ions in glacier meltwater-recharged rivers, the chemical characteristics of the river water, precipitation, and meltwater of the Dongkemadi River Basin, China, in 2014 (from May to October) were systematically analyzed, and combined with the hydrological and meteorological data. The results show that the hydrochemical pattern of the typical river was HCO3−-Ca2+. The most cations were Ca2+ and Mg2+, and the predominant anions were HCO3− and SO42−, in the river. The concentration of major ions and total dissolved solids (TDS) in the river water were much larger than that in the precipitation and meltwater. The TDS concentration was ordered: River water > precipitation > meltwater. The water-rock interaction and the dilution effect of the precipitation and meltwater on the runoff ions resulted in a negative correlation between the ion concentration of the river water and the river flow. The chemical ions of the river runoff mainly originated from rock weathering and the erosion (abrasion) caused by glacier movement. In addition, the contributions of different sources to the dissolved components of the Dongkemadi River were ordered: Carbonate (75.8%) > silicate (15.5%) > hydatogenic rock (5.7%) > atmospheric precipitation (3%), calculated by a forward geochemical model. And the hydrochemical weathering rates of carbonate and silicate minerals were 12.30 t·km−2·a−1 and 1.98 t·km−2·a−1, respectively. The CO2 fluxes, consumed by the chemical weathering of carbonate and silicate, were 3.28 × 105 mol·km−2·a−1 and 0.91 × 105 mol·km−2·a−1, respectively.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3131 ◽  
Author(s):  
Nelly Montcoudiol ◽  
Neil M. Burnside ◽  
Domokos Györe ◽  
Nicholas Mariita ◽  
Thecla Mutia ◽  
...  

In order to assess the sustainability and impact of production from geothermal reservoirs on hydrological systems, a thorough understanding of local and regional hydrogeological systematics is a prerequisite. The Menengai Caldera in the Kenya Great Rift Valley is one of the largest explored geothermal fields in the country. This paper presents a hydrochemical investigation of the Menengai Caldera geothermal field and the ground and surface waters of the surrounding Nakuru County. Our results demonstrated a similar, sodium-alkaline dominated, ionic composition across all water types. Geothermal wells return the highest cation/anion concentrations and largely demonstrate a meteoric source from their δ18O and δ2H signature. Wells MW-09 (central part of the caldera), MW-18 (eastern part) and MW-20 (central part) showed a more evaporitic signature, closely matching with our own calculated Lake Evaporation Line, suggesting an increased mixing influence of Lake Nakuru waters. MW-09 also showed evidence of high-temperature oxygen isotopic exchange and significant water-rock interaction. Lake samples largely demonstrated seasonal shifts in ionic and isotopic values. Lake Nakuru ionic composition and isotopic values increased throughout the 12-month wet–dry–wet season sampling period. This correlated with a decrease in area which suggests a lessening of water inflow and facilitates increased evaporation. Groundwaters demonstrated clear evidence of mixing between meteoric, irrigation and lake waters. These observations enhanced the understanding of the hydrological system surrounding the Menengai Caldera and, when combined with future studies, will provide a powerful tool to assess the sustainability and impact of soon-to-be completed geothermal power production operations.


2016 ◽  
Vol 11 (2) ◽  
pp. 448-458 ◽  
Author(s):  
Linhua Sun ◽  
Song Chen ◽  
Herong Gui

Water source identification is important for water hazard controlling in coal mines. In this study, major ion concentrations of the groundwater collected from four representative aquifer systems in the Baishan coal mine, northern Anhui Province, China, have been analysed by a series of statistical methods. The results indicate that the major ion concentrations of the groundwater from different aquifer system are different with each other, and provided the possibility of water source identification based on hydrochemistry. Factor analysis indicates that these differences are controlled by different types of water rock interactions. The analysis based on US Environmental Protection Agency (EPA) Unmix model identified three sources (weathering of silicate minerals, dissolution of carbonate and evaporate minerals) responsible for the hydrochemical variations of the groundwater. Also, it shows that their contributions for the groundwater in different aquifer systems vary considerably. Based on these variations and on step by step analysis, the source aquifer system for the groundwater samples with unknown source has been determined and, similar to the result obtained by the cluster and discriminant analysis. Therefore, EPA Unmix model can be applied for water source identification in coal mine, as it can provide information about water rock interaction and water source identification simultaneously.


2018 ◽  
Vol 69 (8) ◽  
pp. 1290 ◽  
Author(s):  
Mohammed Bahir ◽  
Salah Ouhamdouch ◽  
Paulà M. Carreira

Study of the Cenomanian–Turonian and Plio–Quaternary aquifers of Essaouira basin (Western Morocco), based on the interpretation of geochemical (major elements) and isotopic (18O, 2H, 13C and 14C) data, has aided the understanding of the hydrodynamics of these aquifers, which is greatly affected by tectonics. Hydrochemical characteristics based on the bivariate diagrams of major ions (Cl–, SO42–, NO3–, HCO3–, Na+, Mg2+, K+ and Ca2+) and electrical conductivity and mineral saturation indices indicate that the origins of groundwater mineralisation are the result of: (1) evaporite dissolution; (2) cation exchange reactions; (3) and evaporation processes. Radiogenic isotopes (3H and 14C) have highlighted the presence of significant recent recharge in the eastern part of the basin, with groundwater moving according to the general flow path (south-east to north-west). Stable isotope data from the Essaouira basin plot along the Global Meteoric Water Line and below the Local Meteoric Water Line. This suggests that groundwater has been recharged under several different climate regimes.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2270
Author(s):  
Wen Liu ◽  
Long Ma ◽  
Jilili Abuduwaili

Due to a lack of water-quality studies compared with water-quantity studies, an investigation into the factors influencing the hydrochemical composition of the rivers in the Tianshan and Altay Mountains was conducted with a model of multiple linear regression, while the suitability of the water quality for irrigation and the health risks of arsenic (As) were assessed with classical evaluation methods. The results suggest that 44.0% of the water samples from the Altay Mountains fell into the Ca-HCO3 category type, 48.0% of the water samples were of the Ca-HCO3-Cl type, and the remaining samples belonged to the Ca-Na-HCO3-Cl type. In the Tianshan Mountain area, 58.6% of the water samples fell into the Ca-HCO3 hydrochemical category, 20.7% of the water samples were of the Ca-HCO3-Cl type, and 20.7% of the water samples belonged to the Ca-Na-HCO3-Cl type. The major ions in the water were dominated by the control of the water and rock interaction. The interaction between water and rock in the Altay area controlled 69.2% of the overall variance in the As content in the river waters, and it dominated 76.2% of the variance in the Tianshan region. The river waters in the Altay and Tianshan Mountain regions are suitable for agricultural irrigation with excellent-to-good water quality. The results also suggest that there is no non-carcinogenic risk and that the carcinogenic risk is between the acceptable/tolerable risk range of 10−6–10−4, except only one sample in Tianshan Mountain region. The research methodology provided a reference for revealing the potential sources of toxic element pollution, and the results provided a scientific basis for regional agricultural irrigation, as well as a reference for decision making on the environmental protection of the watershed.


2016 ◽  
Author(s):  
B. Ait-El-Fquih ◽  
M. E. Gharamti ◽  
I. Hoteit

Abstract. Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The Joint-EnKF directly up-dates the augmented state-parameter vector while the Dual-EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameters estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF; the Dual-EnKF OSA. Compared with the standard Dual-EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional synthetic groundwater aquifer model. Assimilation experiments are performed to assess the performance and robustness of the proposed Dual-EnKF OSA, and to evaluate its results against those of the Joint- and Dual-EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, further providing reliable estimates of their uncertainties. It is further found more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameters estimates than the joint and dual approaches.


Sign in / Sign up

Export Citation Format

Share Document