scholarly journals enjoyable and rigourous paper, despite the arguable novelty on GPS synchronization of picture acquisition time stamping

2016 ◽  
Author(s):  
Jean Michel FRIEDT
Author(s):  
P.E. Batson

Use of the STEM to obtain precise electronic information has been hampered by the lack of energy loss analysis capable of a resolution and accuracy comparable to the 0.3eV energy width of the Field Emission Source. Recent work by Park, et. al. and earlier by Crewe, et. al. have promised magnetic sector devices that are capable of about 0.75eV resolution at collection angles (about 15mR) which are great enough to allow efficient use of the STEM probe current. These devices are also capable of 0.3eV resolution at smaller collection angles (4-5mR). The problem that arises, however, lies in the fact that, even with the collection efficiency approaching 1.0, several minutes of collection time are necessary for a good definition of a typical core loss or electronic transition. This is a result of the relatively small total beam current (1-10nA) that is available in the dedicated STEM. During this acquisition time, the STEM acceleration voltage may fluctuate by as much as 0.5-1.0V.


Author(s):  
G. Botton ◽  
G. L’Espérance ◽  
M.D. Ball ◽  
C.E. Gallerneault

The recently developed parallel electron energy loss spectrometers (PEELS) have led to a significant reduction in spectrum acquisition time making EELS more useful in many applications in material science. Dwell times as short as 50 msec per spectrum with a PEELS coupled to a scanning transmission electron microscope (STEM), can make quantitative EEL images accessible. These images would present distribution of elements with the high spatial resolution inherent to EELS. The aim of this paper is to briefly investigate the effect of acquisition time per pixel on the signal to noise ratio (SNR), the effect of thickness variation and crystallography and finally the energy stability of spectra when acquired in the scanning mode during long periods of time.The configuration of the imaging system is the following: a Gatan PEELS is coupled to a CM30 (TEM/STEM) electron microscope, the control of the spectrometer and microscope is performed through a LINK AN10-85S MCA which is interfaced to a IBM RT 125 (running under AIX) via a DR11W line.


Author(s):  
David L. Wetzel ◽  
John A. Reffner ◽  
Gwyn P. Williams

Synchrotron radiation is 100 to 1000 times brighter than a thermal source such as a globar. It is not accompanied with thermal noise and it is highly directional and nondivergent. For these reasons, it is well suited for ultra-spatially resolved FT-IR microspectroscopy. In efforts to attain good spatial resolution in FT-IR microspectroscopy with a thermal source, a considerable fraction of the infrared beam focused onto the specimen is lost when projected remote apertures are used to achieve a small spot size. This is the case because of divergence in the beam from that source. Also the brightness is limited and it is necessary to compromise on the signal-to-noise or to expect a long acquisition time from coadding many scans. A synchrotron powered FT-IR Microspectrometer does not suffer from this effect. Since most of the unaperatured beam’s energy makes it through even a 12 × 12 μm aperture, that is a starting place for aperture dimension reduction.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
R.D. Leapman ◽  
S.B. Andrews

Elemental mapping of biological specimens by electron energy loss spectroscopy (EELS) can be carried out both in the scanning transmission electron microscope (STEM), and in the energy-filtering transmission electron microscope (EFTEM). Choosing between these two approaches is complicated by the variety of specimens that are encountered (e.g., cells or macromolecules; cryosections, plastic sections or thin films) and by the range of elemental concentrations that occur (from a few percent down to a few parts per million). Our aim here is to consider the strengths of each technique for determining elemental distributions in these different types of specimen.On one hand, it is desirable to collect a parallel EELS spectrum at each point in the specimen using the ‘spectrum-imaging’ technique in the STEM. This minimizes the electron dose and retains as much quantitative information as possible about the inelastic scattering processes in the specimen. On the other hand, collection times in the STEM are often limited by the detector read-out and by available probe current. For example, a 256 x 256 pixel image in the STEM takes at least 30 minutes to acquire with read-out time of 25 ms. The EFTEM is able to collect parallel image data using slow-scan CCD array detectors from as many as 1024 x 1024 pixels with integration times of a few seconds. Furthermore, the EFTEM has an available beam current in the µA range compared with just a few nA in the STEM. Indeed, for some applications this can result in a factor of ~100 shorter acquisition time for the EFTEM relative to the STEM. However, the EFTEM provides much less spectral information, so that the technique of choice ultimately depends on requirements for processing the spectrum at each pixel (viz., isolated edges vs. overlapping edges, uniform thickness vs. non-uniform thickness, molar vs. millimolar concentrations).


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


Author(s):  
Kazuyuki Koike ◽  
Hideo Matsuyama

Spin-polarized scanning electron microscopy (spin SEM), where the secondary electron spin polarization is used as the image signal, is a novel technique for magnetic domain observation. Since its first development by Koike and Hayakawa in 1984, several laboratories have extensively studied this technique and have greatly improved its capability for data extraction and its range of applications. This paper reviews the progress over the last few years.Almost all the high expectations initially held for spin SEM have been realized. A spatial resolution of several hundreds angstroms has been attained, which is nearly one order of magnitude higher than that of conventional methods for thick samples. Quantitative analysis of magnetization direction has been performed more easily than with conventional methods. Domain observation of the surface of three-dimensional samples has been confirmed to be possible. One of the drawbacks, a long image acquisition time, has been eased by combining highspeed image-signal processing with high speed scanning, although at the cost of image quality. By using spin SEM, the magnetic structure of a 180 degrees surface Neel wall, magnetic thin films, multilayered films, magnetic discs, etc., have been investigated.


1987 ◽  
Vol 26 (06) ◽  
pp. 258-262
Author(s):  
J. Happi ◽  
R. P. Baum ◽  
J. Frohn ◽  
B. Weimer ◽  
A. Halbsguth ◽  
...  

The present study was done in order to examine if the use of111ln-DTPA- labeled MAb fragments in place of 131l-labeled MAb fragments increases the sensitivity of tomographic immunoscintigraphy to reach the level of that of planar imaging techniques. In 11 patients with various primary tumors, local recurrences or metastases [colorectal carcinoma (n = 7), ovarian carcinoma (n = 2), papillary thyroid carcinoma (n = 1), undifferentiated carcinoma of the lung (n = 1)], immunoscintigraphy (IS) was carried out using 111ln-DTPA- labeled F(ab’)2 fragments of various MAbs (anti-CEA, OC 125, anti-hTG) and planar and tomographic imaging were compared intraindividually. By conventional diagnostic procedures, the presence of a tumor mass was confirmed (transmission computer tomography, ultrasound) or verified (131l whole-body scintigraphy, histology) in all cases. Immunoscintigraphy was positive in 9 out of 11 cases by ECT and in 10 out of 11 cases by planar imaging. When using 111 In-labeled MAb fragments, intraindividual comparison of ECT and planar imaging resulted in a similar sensitivity. The increased sensitivity of ECT using this tracer in contrast to 131l-labeled MAb fragments may be attributed to the fact that the physical properties of111 In are much more suitable for the gamma cameras most commonly used (single detector, 3/8” crystal); using 111 In-labeled MAb fragments, count rates sufficient for ECT can be obtained within a reasonable acquisition time. This allows to combine IS with the advantages of ECT regarding tumour localization and prevention of artefacts due to superposition of background.


1987 ◽  
Vol 26 (06) ◽  
pp. 248-252 ◽  
Author(s):  
M. J. van Eenige ◽  
F. C. Visser ◽  
A. J. P. Karreman ◽  
C. M. B. Duwel ◽  
G. Westera ◽  
...  

Optimal fitting of a myocardial time-activity curve is accomplished with a monoexponential plus a constant, resulting in three parameters: amplitude and half-time of the monoexponential and the constant. The aim of this study was to estimate the precision of the calculated parameters. The variability of the parameter values as a function of the acquisition time was studied in 11 patients with cardiac complaints. Of the three parameters the half-time value varied most strongly with the acquisition time. An acquisition time of 80 min was needed to keep the standard deviation of the half-time value within ±10%. To estimate the standard deviation of the half-time value as a function of the parameter values, of the noise content of the time-activity curve and of the acquisition time, a model experiment was used. In most cases the SD decreased by 50% if the acquisition time was increased from 60 to 90 min. A low amplitude/constant ratio and a high half-time value result in a high SD of the half-time value. Tables are presented to estimate the SD in a particular case.


Sign in / Sign up

Export Citation Format

Share Document