scholarly journals MICROENCAPSULATION OF SHARK LIVER OIL POOL BY SPRAY DRYING

2018 ◽  
Vol 48 (2) ◽  
pp. 89-93
Author(s):  
C. M. GARCIA ◽  
M. FERNANDEZ ◽  
O. D. LOPEZ ◽  
M. CASTIÑEIRA ◽  
B. MARTINEZ ◽  
...  

The aim of this paper is to study the spray-dried microencapsulation of shark liver oil using gum arabic and maltodextrin as encapsulating agents. A mix design, was developed where the main factor was the ratio between gum arabic and maltodextrin. Vitamin A content in microencapsulated and non-microencapsulated oil was determined by reversed-phase HPLC analysis, as well as the release of vitamin A from the dried product. The following parameters were also evaluated: encapsulation efficiency, loss on drying, surface morphology and particle size. The encapsulation efficiency of microencapsulated oil increased slightly as the concentration of gum increased. To reach higher encapsulation efficiency and lower moisture content of microencapsulated oil, the combination of gum arabic and maltodextrin should be maintained at 47% and 23%, respectively, according to established manufacturing conditions. The microencapsulation of oil by spray drying has no statistically significant effect on the vitamin A content response, or on its release rate.

2015 ◽  
Vol 39 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Diana Maria Cano-Higuita ◽  
Harvey Alexander Villa Vélez ◽  
Vania Regina Nicoletti Telis

Spray-drying is a suitable method to obtain microencapsulated active substances in the powdered form, resulting in powders with improved protection against environmental factors as well as with higher solubility in water, as in the case of turmeric oleoresin. The present study investigated the spray-drying process of turmeric oleoresin microencapsulated with binary and ternary mixtures of different wall materials: gum Arabic, maltodextrin, and modified corn starch. A statistical simplex centroid experimental design was used considering the encapsulation efficiency, curcumin retention, process yield, water content, solubility, and particle morphology as the analyzed responses. Wall matrices containing higher proportions of modified starch and gum Arabic resulted in higher encapsulation efficiency and curcumin retention, whereas the process yield and water content increased with higher proportions of maltodextrin and gum Arabic, respectively. Regression models of the responses were obtained using a surface response method (ANOVA way), showing statistical values of R2 > 0.790. Also, mean analysis was carried out by Tukey's test, permitting to observe some statistical differences between the blends


2010 ◽  
Vol 105 (2) ◽  
pp. 212-219 ◽  
Author(s):  
Betty J. Burri ◽  
Jasmine S. T. Chang ◽  
Terry R. Neidlinger

β-Carotene (BC), β-cryptoxanthin (CX) and α-carotene (AC) are common carotenoids that form retinol. The amount of retinol (vitamin A) formed from carotenoid-rich foods should depend chiefly on the bioavailability (absorption and circulation time in the body) of carotenoids from their major food sources and the selectivity and reactivity of carotene cleavage enzymes towards them. The objective of the present study was to estimate the apparent bioavailability of the major sources of provitamin A (AC, BC and CX) from the diet by comparing the concentrations of these carotenoids in blood to their dietary intakes. Dietary intakes were estimated by FFQ (three studies in this laboratory, n 86; apparent bioavailability calculated for six other studies, n 5738) or by food record (two studies in our laboratory, n 59; apparent bioavailability calculated for two other studies, n 54). Carotenoid concentrations were measured by reversed-phase HPLC. Apparent bioavailability was calculated as the ratio of concentration in the blood to carotenoid intake. Then apparent bioavailabilities for AC and CX were compared to BC. Eating comparable amounts of AC-, CX- and BC-rich foods resulted in 53 % greater AC (99 % CI 23, 83) and 725 % greater CX (99 % CI 535, 915) concentrations in the blood. This suggests that the apparent bioavailability of CX from typical diets is greater than that of BC. Thus, CX-rich foods might be better sources of vitamin A than expected.


2015 ◽  
Vol 11 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yen Yi Hee ◽  
Chin Ping Tan ◽  
Russly Abdul Rahman ◽  
Noranizan Mohd Adzahan ◽  
Wee Ting Lai ◽  
...  

Abstract The main objective of this study was to evaluate the influence of the different wall material combinations on the microencapsulation of virgin coconut oil (VCO) by spray drying. Maltodextrin (MD) and sodium caseinate (SC) were used as the basic wall materials and mixed with gum Arabic (GA), whey protein concentrate (WPC) and gelatin (G). The stability, viscosity and droplet size of the feed emulsions were measured. MD:SC showed the best encapsulation efficiency (80.51%) and oxidative stability while MD:SC:GA presented the lowest encapsulation efficiency (62.93%) but better oxidative stability than the other two combinations. Microcapsules produced were sphere in shape with no apparent fissures and cracks, low moisture content (2.35–2.85%) and high bulk density (0.23–0.29 g/cm3). All the particles showed relatively low peroxide value (0.34–0.82 meq peroxide/kg of oil) and good oxidative stability during storage. MD:SC:GA microencapsulated VCO had the highest antioxidant activity in both of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) (0.22 mmol butylated hydroxyanisole (BHA)/kg of oil) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays (1.35 mmol trolox/kg of oil).


Author(s):  
Eva Mayasari ◽  
Satrijo Saloko ◽  
Oke Anandika Lestari ◽  
Maria Ulfa

Free glutamic acid is a flavor enhancer compound that provided umami taste. San-sakng (Albertisia papuana Becc.) leaf has been used as a seasoning in the Dayaks tribe, West Kalimantan, Indonesia. The aim of this study was evaluated the effect of different drying inlet air temperature on physico-chemical of the spray dried san-sakng leaf. San-sakng leaf powders was produced using spray drying and maltodextrin as raw material. Completely randomized design was used with one factor, namely drying inlet air temperature on the spray drying process (130°C, 140°C, and 150°C). The results showed that moisture, solubility, bulk density, particle size, and encapsulation efficiency on the San-sakng leaf powders presented significantly affected by the drying inlet air temperature. Increasing inlet air temperature led to reduced moisture, bulk density, and particle size, whereas enhancing the solubility and encapsulation efficiency.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-9
Author(s):  
Safaa S. Abozed ◽  
Ghada M. Elaraby ◽  
Hamdy A. Zahran

Introduction: Purslane (Portulaca oleracea L.) seeds oil are a non-traditional alpha-linolenic acid source (ALA), which is an omega-3 fatty acid. This study aimed to evaluate the physicochemical and sensory properties of mango juice fortified with purslane seed oil (PSO) microcapsules. Materials and Methods: Gum Arabic (GA) and maltodextrin, as wall-materials, were used in the microencapsulation of PSO by spray drying technique. The spray-dried microcapsules were added to the mango juice (200 mL) at the levels of 0.5, 1 and 1.5 g, ALA. Physicochemical properties such as viscosity, total soluble solids (TSS), pH and titratable acidity were measured, as well as sensory evaluation, during 28 days' storage at 4.0 ±0.5°C. Results: Our study indicated that the microencapsulation of PSO by spray drying resulted in the best microencapsulation yield (85.17%) as well as the microencapsulation efficiency (77.40%). The pH and TSS of four juice samples ranged from 3.0 to 3.6 and from 18.8 to 19.1 Brix°, respectively. In addition to that, storage periods had no significant effect on them. Conclusion: According to the findings presented in this paper, it has been concluded that the nutritional value of mango juices was enhanced by the addition of microencapsulated PSO as a source of ω-3 fatty acids.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2491
Author(s):  
José Alfredo Santiz-Gómez ◽  
Miguel Abud-Archila ◽  
Víctor Manuel Ruíz-Valdiviezo ◽  
Yazmin Sánchez-Roque ◽  
Federico Antonio Gutiérrez-Miceli

The carrot is considered a model system in plant cell culture. Spray drying represents a widely used technology to preserve microorganisms, such as bacteria and yeasts. In germplasm conservation, the most used methods are freeze drying and cryopreservation. Therefore, the aim of this work was to evaluate the effect of spray drying on the viability and totipotency of somatic carrot cells. Leaf, root and stem explants were evaluated to induce callus with 2 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D). Calli obtained from the stem were cultivated in a liquid medium with 1 mg/L of 2,4-D. Cell suspensions were spray dried with maltodextrin-gum Arabic and maltodextrin-xanthan gum mixtures, two outlet air temperatures (50 and 60 °C) and 120 °C inlet air temperature. Results showed that carrot cells were viable after spray drying, and this viability remained for six months at 8 °C. The totipotency of the microencapsulated cells was proven. Cells that were not spray dried regenerated 24.6 plantlets, while the spray dried cells regenerated 19 plantlets for each gram of rehydrated powder. Thus, spray drying allowed researchers to obtain viable and totipotent cells. This work is the first manuscript that reported the spray drying of plant somatic cells.


2016 ◽  
Vol 25 (1) ◽  
pp. 107 ◽  
Author(s):  
Shannora YULIASARI ◽  
Dedi Fardiaz ◽  
Nuri Andarwulan ◽  
Sri Yuliani

This study aimed to evaluate the effect of maltodextrin combination with different encapsulation materials in the encapsulation of red palm oil by spray drying, in order to maximize encapsulation efficiency and retention of β-carotene. Maltodextrin was combined with xanthan gum (XG), gum arabic (GA), sodium caseinate (SC). The study was designed using a block randomized design with ten treatments and three replicates. The use of different combinations of encapsulation materials in this study had a significant effect (p<0.05) on the characteristic of encapsulates. The best encapsulation efficiency and β-carotene retention were obtained with MD:XG at a combination of 99.7:0.3%, while the lowest encapsulation efficiency and β-carotene retention were obtained for MD:SC. Combination of MD:XG produced encapsulate with 1.03% of surface oil, 92.40% of oil retention, 72.05% of encapsulation efficiency, and 72.65% of β-caroten retention. The mixtures of different encapsulation materials influenced encapsulate morphology. The MD:SC encapsulate had higher dents and folds on encapsulate surface, whereas the combination of MD:XG resulted in a smoother surface of the encapsulate.


2021 ◽  
pp. 108201322110037
Author(s):  
D Priscilla Mercy Anitha ◽  
Periyar Selvam Sellamuthu

This study aimed to assess the effectiveness of finger millet milk complex (almond gum with maltodextrin) to encapsulate the isolated Lactobacillus strains. The wall materials were optimized based on its encapsulation efficiency, antioxidant activity, total phenol content and encapsulation yield. The strains were spray-dried at the optimized condition: 120 °C inlet temperature, maltodextrin 30% and almond gum 1.5%. Survival count of microencapsulated Lactobacillus plantarum RS09 and RS23 strains were 7.91 and 7.83 CFU/g respectively. Viability of microencapsulated strains and free cells under low pH, bile salt, simulated gastric juice and intestinal juice were assessed. Strain RS09 exhibited the highest viable count. Addition of almond gum and finger millet milk increased the phenolic content and offered a protective effect to the strains during spray drying. Results also showed that the powders were amorphous with partial irregularities and a smooth surface with less dents. Hence, they could be used as potential encapsulating agents during spray drying.


Proceedings ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 11
Author(s):  
Rafael Alarcón ◽  
Billy Gonzales ◽  
Axel Sotelo ◽  
Gabriela Gallardo ◽  
María del Carmen Pérez-Camino ◽  
...  

Sacha inchi (Plukenetia huayllabambana) oil was microencapsulated by spray drying with gum arabic and with extracts of camu camu (Myrciaria dubia (HBK) Mc Vaugh) and mango (Mangifera indica) skins, obtained by assisted microwave. The physicochemical characteristics, such as moisture content, encapsulation efficiency, particle size, morphology, fatty acid composition and oxidative stability, were evaluated in order to select the best formulation for the development of functional foods. The most important results indicate that the microcapsules formulated with extracts of the fruit skins provide greater protection to sacha inchi oil (P. huayllabambana) against oxidation compared to commercial antioxidant BHT (Butylated Hydroxytoluene), resulting in a slight loss of ω-3 fatty acids.


Sign in / Sign up

Export Citation Format

Share Document