Transparent Rubber Compounds. The Effect of Chemical Composition of Magnesium Carbonate Fillers

1941 ◽  
Vol 14 (1) ◽  
pp. 221-226
Author(s):  
Willard F. Bixby ◽  
Howard I. Cramer

Abstract From this investigation the following conclusions may be drawn. 1. The x-ray results of Bixby and Hauser have been substantiated by chemical analysis and by microscopic examination. The magnesium carbonate productive of highest light transmitting properties is of the type: 5MgO.4CO2.xH2O. The normal carbonate, MgCO3, gives very low transmissions. 2. The best Japanese carbonate studied (sample No. 3) is pure 5MgO.4CO2.xH2O. 3. A domestic carbonate (sample No. 20), which is also pure 5MgO.4CO2.xH2O, is commercially available and produces transparency in rubber compounds equal to that obtained with the Japanese product. 4. Domestic carbonates in general contain more carbon dioxide than is required by a 5MgO.4CO2.xH2O carbonate, and are probably mixtures of this material and of the normal carbonate, MgCO3. 5. Light transmitting properties fall rapidly as the proportion of normal carbonate, MgCO3, rises. 6. Carbonates containing less than enough carbon dioxide to provide a 5MgO.4CO2.xH2O carbonate are probably mixtures of this material and hydrated magnesium oxide, MgO.H2O. 7. In preparing basic carbonates for use in producing high light-transmitting rubber, it is better to produce a material with slightly less carbon dioxide than necessary for a 5MgO.4CO2.xH2O carbonate, rather than more. 8. Particle size is an important factor influencing light transmission, especially when the normal carbonate, MgCO3, is present. Generally speaking, especially in the size ranges encountered in these carbonates, a finely divided MgCO3 will offer greater hindrance to the passage of light than will a larger size material.

1937 ◽  
Vol 10 (2) ◽  
pp. 299-308 ◽  
Author(s):  
W. F. Bixby ◽  
E. A. Hauser

Abstract 1. Basic magnesium carbonates of the type 5MgO·4CO2·xH2O will produce transparent vulcanized rubber. 2. Neutral carbonates of the magnesite type result in stocks of poor light transmission, even at low loading. 3. The basic carbonates, although of extremely fine particle size, are definitely crystalline in structure, as revealed by x-ray analysis. 4. The sample of magnesium carbonate producing the best transparency was a Japanese variety. When 25 per cent by weight was compounded in rubber, an over-all transmission of 45 per cent was produced. None of the domestic varieties gave higher than 36 per cent, and only two samples out of the eighteen examined produced this value. 5. The best Japanese carbonate (sample 3) and the best domestic carbonate (sample 9) possessed the same structure— that of a basic magnesium carbonate of the general form type 5MgO·4CO2·xH2O. 6. The Japanese carbonate, corresponding to the formula type 5MgO·4CO2·6H2O, gave higher total light transmissions at low filler concentrations than the best domestic carbonate, corresponding to the formula 5MgO·4CO2·9H2O. 7. Mixes containing between 25 and 40 per cent by weight of basic magnesium carbonate passed the greatest amount of undeviated light. 8. The amount of undeviated light passed by samples compounded with good Japanese magnesium carbonate and good domestic carbonate was essentially the same between 25 and 40 per cent filler—about 22 per cent. 9. The tensile strength of compounds containing domestic carbonate was higher in the 25 per cent filler range than that of mixtures containing Japanese carbonate.


2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


2020 ◽  
Vol 18 (1) ◽  
pp. 951-961
Author(s):  
Qiuju Chen ◽  
Tao Hui ◽  
Hongjuan Sun ◽  
Tongjiang Peng ◽  
Wenjin Ding

AbstractVarious morphologies of magnesium carbonate hydrate had been synthesized without using any organic additives by carefully adjusting the reaction temperature and time during the talc carbonation process. At lower temperatures, magnesium carbonate hydrate was prone to display needle-like morphology. With the further increase of the carbonation temperature, the sheet-like crystallites became the preferred morphology, and at higher aging temperatures, these crystallites tended to assemble into layer-like structures with diverse morphologies, such as rose-like particles and nest-like structure. The reaction time had no effect on the crystal morphology, but it affected the particle size and situation of the crystal growth. X-Ray diffraction results showed that these various morphologies were closely related to their crystal structure and compositions. The needle-like magnesium carbonate hydrate had a formula of MgCO3·3H2O, whereas with the morphological transformation from needle-like to sheet-like, rose-like, and nest-like structure, their corresponding compositions also changed from MgCO3·3H2O to 4MgCO3·Mg(OH)2·8H2O, 4MgCO3·Mg(OH)2·5H2O, and 4MgCO3·Mg(OH)2·4H2O.


2007 ◽  
Vol 50 (5) ◽  
pp. 851-860 ◽  
Author(s):  
Maria Sélia Blonski ◽  
Carlos Roberto Appoloni ◽  
Paulo Sérgio Parreira ◽  
Pedro Henrique Arruda Aragão ◽  
Virgilio Franco Nascimento Filho

Energy Dispersion X-Ray Fluorescence Technique (EDXRF) was employed to study the effects of the fumagina disease on the elementary chemical composition of the leaves. The experimental set up consisted of a Mo X-ray tube (Ksub<FONT FACE=Symbol>µ</FONT> = 17.44 keV) with Zr filter and a Si (Li) detector. The measurements were performed with the infected and healthy leaves of citric plants. The elements Ti, Mn, Fe, Cu and Zn were quantified, with an average DL of 69, 12, 8, 4 and 4 µg.g-1 respectively. The obtained concentration for Fe varied from 44 to 192 µg.g-1 in healthy leaves and from 363 to 704 µg.g-1 in infected leaves with fumagina .


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1002
Author(s):  
Seham Alterary ◽  
Narguess H. Marei

Fly ash (FA) is produced from coal power plants’ combustion. FA is used in the concrete industry, as an ingredient in the brick and paving. Knowledge of the chemical composition and toxic metal content in FA is essential for evaluating its environmental risks. This study aimed to assess FA purification effect on its antibacterial activity against Escherichia coli and Bacillus cereus, by calculating percent bacterial reduction. Moreover, centrifugation time effect on the purification process was evaluated. Chemical composition and properties of purified FA were determined and compared with raw FA, using Fourier transform Infrared (FTIR); X-ray diffraction (XRD); X-ray photoelectron spectroscopy (XPS); energy-dispersive X-ray (EDXA); carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis; moisture content; and loss-of-ignition. Particle size was predicted by using dynamic laser scattering, BET and scanning electron microscopy (SEM). The CHNS results showed that purified FA contains the highest carbon content (88.9%), as compared to raw FA (82.1%). The particle size distribution (PSD) of FA microspheres ranges from 48.53 ± 17.9 to 52.98 ± 19.4 µm by using SEM. PSD, using dynamic laser scattering, showed polydispersed and non-uniform size in raw FA, ranging in size from 107.1 to 1027 nm, while purified FA manifests a monodispersed size from 103.3 to 127.3 nm. FA showed the least bacterial growth reduction %, while the purified fly ash (FA2) showed the highest bacterial growth reduction %, as compared to the control bacterial broth culture without fly ash.


Clay Minerals ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 417-422 ◽  
Author(s):  
H. M. Köster

AbstractMineralogical and chemical heterogeneity within three standard clay mineral samples have been identified by X-ray diffraction and chemical analysis of various size-fractions. This heterogeneity is partly attributed to accessory minerals, but mostly to structural and compositional variations in the 2:1 layer minerals of different particle size in the same specimen.


2016 ◽  
Vol 869 ◽  
pp. 159-163
Author(s):  
Danúbia Lisbôa da Costa ◽  
Ingrid Mayara Medeiros Fernandes ◽  
Aluska Nascimento Simões Braga ◽  
Rosiane Maria da Costa Farias ◽  
Romualdo Rodrigues Menezes ◽  
...  

Ornamental rocks are among the most promising business areas of the mineral sector, raising the necessity for, besides beauty, investments in quality, safety and characterization in the various application fields of these rocks. So, this work aims at the microstructural characterization of the class of these rocks: the Cariri Rocks, also known the limestone, which are calcareous rocks mainly formed by calcium and magnesium carbonate, possibly presenting variations due to their origins. For characterization, we studied four samples, being two from Chapada do Apodi and two from Chapada do Araripe, characterized physically and micro-structurally through chemical analysis, X-ray diffraction, optical micrography and porosimetry tests. The results prove that the limestones are calcitic and dolomitic, and present porosity varying from 5 to 15%, with pores concentration between 100nm and 10μm, besides the high microstructural heterogeneity.


Clay Minerals ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 593-606 ◽  
Author(s):  
A. Nkalih Mefire ◽  
A. Njoya ◽  
R. Yongue Fouateu ◽  
J.R. Mache ◽  
N.A. Tapon ◽  
...  

AbstractThirty clay samples collected from three hills in Koutaba (west Cameroon) were characterized in order to evaluate their potential use as raw materials for ceramics. After preliminary mineralogical identification by X-ray diffraction, three representative samples from the three different hills, referred to hereafter as K1M, K2M and K3M, were selected for further investigation by X-ray fluorescence, plasticity, granularity and thermogravimetric analysis. The main clay minerals are kaolinite (32–51%) and illite (up to 12%). Additional major phases are quartz (32–52%), goethite (6–7%) and feldspars (0–4%). The chemical composition showed variable amounts of SiO2(60–72%), Al2O3(15–20%) and Fe2O3(1–9%), in accordance with the quartz abundance in all of the samples studied. The particle-size distribution showed a large proportion of silty fraction (64–88%) with moderate sandy (9–19%) and clayey fractions ( < 5% for K2M, 12% for K1M and 20% for K3M). All of the clays showed moderate plasticity-index values (8–11%). Because of these characteristics, K1M and K3M may be suitable for use in common bricks and hollow ceramic products. Sieving or the addition of ball clays is recommended to increase the plasticity of sample K2M for use in common bricks.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7101
Author(s):  
Marta Marczak-Grzesik ◽  
Piotr Piersa ◽  
Mateusz Karczewski ◽  
Szymon Szufa ◽  
Hilal Ünyay ◽  
...  

One of the solid waste produced during the combustion of coal are fly ashes. Disposal challenges and environmental consequences are the results of significant process yield and atmospheric emission of fly ashes. The exact chemical composition of FA depends mainly on the type of utilised fuel and combustion conditions. It consists mainly of chemically stable metal oxides, such as Al2O3, Fe2O3, SiO2, CaO, MgO, K2O, Na2O and TiO2, but its toxicity is related to the possible presence of some trace elements, such as As, Hg, Cd, Se and Cr. The chemical and physical properties of fly ash (e.g., particle size distribution, porosity, and surface area) make it suitable as an adsorbent to remove various impurities from process flows such as flue gas stream. Its suitability for capturing mercury from flue gas was experimentally confirmed due to its abundant supply, particle size, bulk density, porosity, chemical composition and low cost. Hence, the use of fly ash as adsorbents and precursors for the production of heavy metal adsorbents is of great practical importance, as it reduces the cost of mercury capture and alleviates the problems associated with the disposal of solid waste. Studies showed that the chemical components present in fly ash additives could stimulate catalytic oxidative capacity, which increases the adsorption of Hg0 oxidation and adsorption of both Hg and CO2. The presented study analysed fly ashes from different zones of the electrostatic precipitator and verified their suitability for removing impurities from flue gases, i.e., mercury and carbon dioxide. The results outlined modified fly ash as having good Hg and CO2 removal capabilities. The adsorption efficiency of Hg reached 92% for Hg and 66% for CO2, while untreated fly ash reached 67% for Hg and 59% for CO2.


2014 ◽  
Vol 17 (3) ◽  
pp. 45-56 ◽  
Author(s):  
Jaime Restrepo Osorio ◽  
Ana Julia Colmenares Dulcey ◽  
Luis E. Mora ◽  
Rubén Albeiro Sánchez Andica

Essential oils from pipilongo seeds (Piper tuberculatum) was extracted using supercritical carbon dioxide. The extraction was performed as a function of particle size of the grinded seeds. The highest yield (2,812%) was obtained with the smallest particle size. The chemical composition analysis  of  the  oil  by  GC-MS  led  to  identify  15  compounds,  some  of  which  are  β-elemene, caryophyllene, β-farnesene, neophytadiene and piperine among others. The microbicide activity of the essential oil was determined by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays, showing that the growth of the bacteria Staphylococcus aureus and Bacillus subtilis was inhibited, and hence with a possible microbicidal effect, whereas for pseudomonas aeruginosa and Salmonella typhimurium showed no effect on their growth.


Sign in / Sign up

Export Citation Format

Share Document