Sensitivities in the Production and Design of EPDM Rubber Springs

2002 ◽  
Vol 75 (2) ◽  
pp. 265-274 ◽  
Author(s):  
N. Naveh ◽  
J. Vittoser ◽  
Z. Glikman ◽  
S. Putter

Abstract Modeling and robustness are two major concerns in the design and fabrication of rubber springs. This work is part of an extended program to investigate the relationships between rubber formulation, spring design, production variables, and spring performance throughout their useful life. The robustness of an EPDM compound to variations in composition or process parameters has been evaluated. The effect of crosslinker content, source of carbon black and mixing, was assessed in terms of standard mechanical properties. The elastic moduli were measured on lab size specimens and used to successfully model the behavior of a large toroidal rubber spring. Modeling included tailoring the cross-sectional shape and chamfering the corners to reduce strain levels, thus enabling spring compression up to 25% of its height with moderate strain. The spring behavior is unaffected by the scatter in friction at assembly stage or during service. The cross-sectional shape is shown to be a major factor in the spring behavior.

2012 ◽  
Vol 441 ◽  
pp. 713-716
Author(s):  
Mizue Kuriyagawa ◽  
Koh Hei Nitta

The mechanical yielding and necking behaviors of metallocene-catalyzed high density polyethylenes were investigated from a structural point of view. In particular the natural draw ratio was investigated with different crosshead speeds, molecular weights, and the cross-section shapes of sample specimens. We proposed a structural model for explaining the necking formation in addition to the molecular weight and the cross-sectional shape dependences of the natural draw ratio.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 341
Author(s):  
Yang Wei ◽  
Yang Xu ◽  
Gaofei Wang ◽  
Xunyu Cheng ◽  
Guofen Li

Axial compression tests were carried out on 72 FRP (fiber reinforced polymer)–stirrup composite−confined concrete columns. Stirrups ensure the residual bearing capacity and ductility after the FRP fractures. To reduce the effect of stress concentration at the corners of the confined square−section concrete columns and improve the restraint effect, an FRP–stirrup composite−confined concrete structure with rounded corners is proposed. Different corner radii of the stirrup and outer FRP were designed, and the corner radius of the stirrup was adjusted accurately to meet the designed corner radius of the outer FRP. The cross−section of the specimens gradually changed from square to circular as the corner radius increased. The influence of the cross−sectional shape and corner radius on the compressive behaviour of FRP–stirrup composite−confined concrete was analysed. An increase in the corner radius can cause the strain distribution of the FRP to be more uniform and strengthen the restraint effect. The larger the corner radius of the specimen, the better the improvement of mechanical properties. The strength of the circular section specimen was greatly improved. In addition, the test parameters also included the FRP layers, FRP types and stirrup spacing. With the same corner radius, increasing the number of FRP layers or densifying the stirrup spacing effectively improved the mechanical properties of the specimens. Finally, a database of FRP–stirrup composite−confined concrete column test results with different corner radii was established. The general calculation models were proposed, respectively, for the peak points, ultimate points and stress–strain models that are applicable to FRP−, stirrup− and FRP–stirrup−confined concrete columns with different cross−sectional shapes under axial compression.


1985 ◽  
Vol 14 (3) ◽  
pp. 119-122 ◽  
Author(s):  
R M Aspden

The meniscus has been modelled as a toroid of constant wedge-shaped cross-section resting on a compliant base and loaded in compression from above. This simple model allows the cross-sectional shape and the mechanical properties of the fibrocartilage to be varied systematically in order to determine the essential features of the response of the meniscus to compressive load. A finite element representation of this model shows that a circumferential tensile strain is developed, irrespective of the cross-sectional shape or the elastic moduli of the fibrocartilage, to balance the applied load. A horizontal boundary between regions of positive and negative shear strains and a region of radial tensile strain are also developed. These regions coincide with the locations of horizontal and longitudinal tears which are the most commonly observed lesions of the meniscus. The model shows that the posterior segment of the medial meniscus is most vulnerable to injury.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 996
Author(s):  
Hiroyuki Shima ◽  
Nao Furukawa ◽  
Yuhei Kameyama ◽  
Akio Inoue ◽  
Motohiro Sato

Hollow-section columns are one of the mechanically superior structures with high buckling resistance and high bending stiffness. The mechanical properties of the column are strongly influenced by the cross-sectional shape. Therefore, when evaluating the stability of a column against external forces, it is necessary to reproduce the cross-sectional shape accurately. In this study, we propose a mathematical method to describe a polygonal section with rounded edges and vertices. This mathematical model would be quite useful for analyzing the mechanical properties of plants and designing plant-mimicking functional structures, since the cross-sections of the actual plant culms and stems often show rounded polygons.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2019 ◽  
Vol 7 (4) ◽  
pp. 5-8
Author(s):  
Linar Sabitov ◽  
Ilnar Baderddinov ◽  
Anton Chepurnenko

The article considers the problem of optimizing the geometric parameters of the cross section of the belts of a trihedral lattice support in the shape of a pentagon. The axial moment of inertia is taken as the objective function. Relations are found between the dimensions of the pentagonal cross section at which the objective function takes the maximum value. We introduce restrictions on the constancy of the consumption of material, as well as the condition of equal stability. The solution is performed using nonlinear optimization methods in the Matlab environment.


Sign in / Sign up

Export Citation Format

Share Document