PEROXIDE CROSS-LINKING OF EPDM USING MOVING DIE RHEOMETER MEASUREMENTS. I: EFFECTS OF THE THIRD MONOMER CONCENTRATION AND PEROXIDE CONTENT
ABSTRACT The influence of the third monomer 5-ethylene-2-norbornene (ENB) and peroxide content on cure behavior and network structure of peroxide-cured EPDM were investigated by moving die rheometer, NMR relaxation, and dynamic mechanical thermal spectroscopy. According to the rubber elasticity theory, the torque measurement results showed the network structure of peroxide-cured EPDM contained chemical cross-links via combination reaction (Ccom), chemical cross-links via addition reaction (Cadd), and the contribution of entanglement density and network defects to the total cross-link density (CEN). The total cross-link density (Ctot) increased linearly with the peroxide content. The increase of ENB concentration was beneficial for the improvement of cross-linking efficiency of peroxide, but it made the diene conversion of EPDM decrease. CEN was dependent on the third monomer content, which also provided the dominant contribution to the Ctot at low peroxide contents. Furthermore, Ccom and Cadd were dependent on peroxide content linearly, and the latter also was governed by the ENB level.