Elongation at Break as a Measure of Cross-Link Density in Vulcanized Elastomers

1966 ◽  
Vol 39 (3) ◽  
pp. 726-739 ◽  
Author(s):  
E. DiGiulio ◽  
G. Bellini ◽  
G. V. Giandinoto

Abstract After recalling the reaction mechanism suggested for the crosslinking of ethylene propylene copolymers with organic peroxides, the authors consider the relation between concentration of curing agent and crosslink density. It is experimentally found that, as a first approximation, the elongation ratio at break of vulcanizates (unfilled or filled with small quantities of carbon black) is a function of molar concentration of peroxide only: αR=K/P1/2 This relation can be theoretically justified on the basis of the extensibility of polymer chain segments and of the criterion for rupture originally put forward by Taylor and Darin. By applying the above relation to ethylene propylene copolymers it is possible to evaluate the influence of the chain-splitting reaction during cross-linking. The reciprocal of the square of elongation ratio at break (1/αR2) measures the total degree of crosslinking.

2021 ◽  
Author(s):  
Jacob Ishibashi ◽  
Ian Pierce ◽  
Alice Chang ◽  
Aristotelis Zografos ◽  
Bassil El-Zaatari ◽  
...  

<p>The composition of low-T<sub>g</sub> <i>n</i>-butylacrylate-<i>block</i>-(acetoxyaceto)ethyl acrylate block polymers is investigated as a strategy to tune the properties of dynamically cross-linked vinylogous urethane vitrimers. As the proportion of the cross-linkable block is increased, the thermorheological properties, structure, and stress relaxation evolve in ways that cannot be explained by increasing cross-link density alone. Evidence is presented that network connectivity defects such as loops and dangling ends are increased by microphase separation. The thermomechanical and viscoelastic properties of block copolymer-derived vitrimers arise from the subtle interplay of microphase separation and network defects.</p><div><br></div><p></p>


1998 ◽  
Vol 530 ◽  
Author(s):  
Petra Eiselt ◽  
Jon A. Rowley ◽  
David J. Mooney

AbstractReconstruction of tissues and organs utilizing cell transplantation offers an attractive approach for the treatment of patients suffering from organ failure or loss. Highly porous synthetic materials are often used to mimic the function of the extracellular matrix (ECM) in tissue engineering, and serve as a cell delivery vehicle for the formation of tissues in vivo. Alginate, a linear copolysaccharide composed of D-mannuronic acid (M) and L-guluronic acid (G) units is widely used as a cell transplantation matrix. Alginate is considered to be biocompatible, and hydrogels are formed in the presence of divalent cations such as Ca2+, Ba2+ and Sr2+. However, ionically cross-linked alginate gels continuously lose their mechanical properties over time with uncontrollable degradation behavior. We have modified alginate via covalent coupling of cross-linking molecules to expand and stabilize the mechanical property ranges of these gels. Several diamino PEG molecules of varying molecular weight (200, 400, 1000, 3400) were synthesized utilizing carbodiimide chemistry. Sodium alginate was covalently cross-linked with these cross-linking molecules, and mechanical properties of the resulting hydrogels were determined. The elastic modulus of the cross-linked alginates depended on the molecular weight of the cross-linking molecules, and ranged from 10-110 kPa. The theoretical cross-link density in the hydrogels was also varied from 3 to 47% (relative to the carboxylic groups in the alginate) and the mechanical properties were measured. The elastic modulus increased gradually and reached a maximum at a cross-link density of 15%. In summary, covalently coupled hydrogels can be synthesized which exhibit a wide range of mechanical properties, and these materials may be useful in a number of tissue engineering applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Elena Medlenová ◽  
Rastislav Dosoudil ◽  
Ivan Hudec

Rubber magnetic composites were prepared by incorporation of barium ferrite in constant amount—50 phr into acrylonitrile-butadiene rubber. Dicumyl peroxide as the curing agent was used for cross-linking of rubber magnets alone, or in combination with four different types of co-agents. The main aim was to examine the influence of curing system composition on magnetic and physical-mechanical properties of composites. The cross-link density and the structure of the formed cross-links were investigated too. The results demonstrated that the type and amount of the co-agent had significant influence on cross-link density, which was reflected in typical change of physical-mechanical properties. The tensile strength increased with increasing amount of co-agents, which can be attributed to the improvement of adhesion and compatibility on the interphase filler-rubber due to the presence of co-agents. Magnetic characteristics were found not to be influenced by the curing system composition. The application of peroxide curing systems consisting of organic peroxide and co-agents leads to the preparation of rubber magnets with not only good magnetic properties but also with improved physical-mechanical properties, which could broaden the sphere of their application uses.


2020 ◽  
Vol 13 (1) ◽  
pp. 1-5
Author(s):  
Patrik Macúrik ◽  
Rafal Anyszka ◽  
Ivan Hudec ◽  
Terézia Malčeková ◽  
Ján Kruželák

AbstractThe study was focused on the investigation of trans-polyoctylene (TOR) influence on cross-linking as well as mechanical and rheological properties of rubber compounds based on styrene-butadiene rubber (SBR). SBR was compounded with different proportions of TOR in the concentration range from 0 to 30 phr. Integration of TOR into rubber leads to the prolongation of the optimum curing time and scorch time and thus the decrease of the curing rate. Higher content of TOR led to less viscous rubber due to the plasticizing effect. Cross-link density of vulcanizates was reduced, which correlates with higher elongation at break. Tensile strength and hardness of vulcanizates increased with the increasing TOR content, probably due to the increasing amount of the crystalline phase.


2016 ◽  
Vol 88 (12) ◽  
pp. 1103-1116 ◽  
Author(s):  
Lorenzo Massimo Polgar ◽  
Robin R.J. Cerpentier ◽  
Gijs H. Vermeij ◽  
Francesco Picchioni ◽  
Martin van Duin

Abstract It is well-known that the properties of cross-linked rubbers are strongly affected by the cross-link density. In this work it is shown that for thermoreversibly cross-linked elastomers, the type and length of the cross-linker also have a significant effect. A homologous series of diamine and bismaleimide cross-linkers was used to cross-link maleic-anhydride-grafted EPM irreversibly and furan-modified EPM thermoreversibly, respectively. Bismaleimide cross-linkers with a polarity close to that of EPM and a relatively low melting point have a better solubility in the rubber matrix, which results in higher chemical conversion and, thus, higher cross-link densities at the same molar amount of cross-linker. Samples cross-linked with different spacers (aromatic and aliphatic spacers of different lengths) were compared at the same cross-link density to interpret the effects on the material properties. The rigid character of the short aliphatic and the aromatic cross-linkers accounts for the observed increase in hardness, Young´s modulus and tensile strength with respect to the longer, more flexible aliphatic cross-linkers. In conclusion, the structure of the cross-linking agent can be considered as an alternative variable in tuning the rubber properties, especially for thermoreversibly cross-linked rubber.


2005 ◽  
Vol 13 (1) ◽  
pp. 93-103 ◽  
Author(s):  
M. Madani ◽  
M.M. Badawy

The influence of both beam irradiation and step cross-linking on high abrasion furnace (HAF) carbon black loaded natural rubber (NR) vulcanizates are reported. With irradiation, a higher cross-link density, ν, thermal conductivity, λ, and glass transition temperature, Tg, have been observed for such materials, as compared with the un-irradiated ones. There is also a decreased specific heat capacity, Cp. Meanwhile, the step cross-linking process has a slight effect on the cross-link density, glass transition temperature and thermal properties of these composites. The results of such changes in thermal conductivity are explained with the help of a simple modified model.


2015 ◽  
Vol 88 (1) ◽  
pp. 40-52 ◽  
Author(s):  
He Wang ◽  
Ying Ding ◽  
Shugao Zhao ◽  
Claus Wrana

ABSTRACT The influence of the third monomer 5-ethylene-2-norbornene (ENB) and peroxide content on cure behavior and network structure of peroxide-cured EPDM were investigated by moving die rheometer, NMR relaxation, and dynamic mechanical thermal spectroscopy. According to the rubber elasticity theory, the torque measurement results showed the network structure of peroxide-cured EPDM contained chemical cross-links via combination reaction (Ccom), chemical cross-links via addition reaction (Cadd), and the contribution of entanglement density and network defects to the total cross-link density (CEN). The total cross-link density (Ctot) increased linearly with the peroxide content. The increase of ENB concentration was beneficial for the improvement of cross-linking efficiency of peroxide, but it made the diene conversion of EPDM decrease. CEN was dependent on the third monomer content, which also provided the dominant contribution to the Ctot at low peroxide contents. Furthermore, Ccom and Cadd were dependent on peroxide content linearly, and the latter also was governed by the ENB level.


2009 ◽  
Vol 18 (8) ◽  
pp. 915-921 ◽  
Author(s):  
Amy Solan ◽  
Shannon L. M. Dahl ◽  
Laura E. Niklason

It has been shown that mechanical stimulation affects the physical properties of multiple types of engineered tissues. However, the optimum regimen for applying cyclic radial stretch to engineered arteries is not well understood. To this end, the effect of mechanical stretch on the development of engineered blood vessels was analyzed in constructs grown from porcine vascular smooth muscle cells. Cyclic radial distension was applied during vessel culture at three rates: 0 beats per minute (bpm), 90 bpm, and 165 bpm. At the end of the 7-week culture period, harvested vessels were analyzed with respect to physical characteristics. Importantly, mechanical stretch at 165 bpm resulted in a significant increase in rupture strength in engineered constructs over nonstretched controls. Stress–strain data and maximal elastic moduli from vessels grown at the three stretch rates indicate enhanced physical properties with increasing pulse rate. In order to investigate the role of collagen cross-linking in the improved mechanical characteristics, collagen cross-link density was quantified by HPLC. Vessels grown with mechanical stretch had somewhat more collagen and higher burst pressures than nonpulsed control vessels. Pulsation did not increase collagen cross-link density. Thus, increased wall thickness and somewhat elevated collagen concentrations, but not collagen cross-link density, appeared to be responsible for increased burst strength.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1116
Author(s):  
Dávid Zoltán Pirityi ◽  
Kornél Pölöskei

Rubber waste remains a challenge for material science because its covalently cross-linked structure hinders the establishment of the circular economy of rubber. Devulcanisation may provide a solution, as it converts rubber vulcanisates back into their original, uncured state. Devulcanised rubber may be revulcanised or incorporated into virgin rubber, thus waste is utilized and the use of primary resources is reduced at the same time. In this paper, we treated sulphur-cured EPDM (ethylene propylene diene monomer) rubber on a two-roll mill at various temperatures and frictions. We determined the effectiveness of devulcanisation via Horikx’s analysis, which suggested that low devulcanisation temperatures would result in a 50% decrease in cross-link density with minimal polymer degradation. The devulcanisate was recycled via two methods: (a) revulcanisation with extra curing agents, and (b) mixing it with various amounts of the original rubber mixture, preparing rubber samples with 25, 50, 75, and 100 wt% recycled content. Tensile tests revealed that the samples’ elastic properties were severely compromised at 75 and 100 wt% devulcanisate contents. However, tensile strength decreased only by 15% and 20% for revulcanisates containing 25% and 50% recycled rubber, respectively.


Sign in / Sign up

Export Citation Format

Share Document