UNDERSTANDING THE INFLUENCE OF OLIGOMERIC RESINS ON TRACTION AND ROLLING RESISTANCE OF SILICA-REINFORCED TIRE TREADS

2015 ◽  
Vol 88 (1) ◽  
pp. 65-79 ◽  
Author(s):  
N. Vleugels ◽  
W. Pille-Wolf ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT This study concerns the silica reinforcement of styrene–butadiene rubber compounds for passenger car tire treads, with the objective of gaining greater insight into the beneficial effects of oligomeric resins. The major tire performance factors predicted are rolling resistance and (wet) skid resistance measured on a laboratory scale. Three types of resins were tested: a polyterpene, a terpene-phenolic, and a pure vinyl-aromatic hydrocarbon resin, at various concentrations, namely, 2, 4, and 6 parts per hundred of rubber (phr). Laboratory scale dynamic mechanical analysis (DMA), Mooney viscosity, cure meter, and tensile and hardness tests were used to assess the behavior of these resins in the rubber and to characterize the processibility of the compounds. The DMA shows that the resins and rubber compounds are partially compatible for the low resin quantities used. The tan δ loss factor versus temperature was used as an indication for wet skid and rolling resistance. The shift to a higher temperature in the tan δ peak, due to the contribution of the tan δ peak shift of the resins, is the reason for improved wet skid performance. A maximum improvement of about 35% in the wet skid region (0 °C–30 °C) is found. The improved tan δ at 60 °C, indicative for rolling resistance, accounts for reduced interaction between filler particles. This is also confirmed by a decrease in the Payne effect. A maximum improvement of about 15% is found in the rolling resistance temperature range, dependent on the particular choice of the resin.

2021 ◽  
pp. 009524432098815
Author(s):  
Viviane Meyer Hammel Lovison ◽  
Maurício Azevedo de Freitas ◽  
Maria Madalena de Camargo Forte

Silica-filled styrene butadiene rubber (SBR)/butadiene rubber (BR) compounds plasticized with mineral oils are mainly used to produce green tire treads. Previous works have demonstrated that the partial replacement of naphthenic oil (ONAF) by bio-based oils can provide processing and performance improvements for rubber compounds, along with environmental benefits. In this study, two modified soybean oils (esterified, OEST or esterified and epoxidized, OEPX) were investigated with the aim of evaluating the complete replacement of ONAF and determining whether the chemical properties of the oils affect the performance of silica-filled E-SBR/BR compounds, using the compound with ONAF as a reference. The physical properties, curing characteristics, morphology, and dynamic mechanical behavior were evaluated. The use of the modified soybean oils decreased the optimal cure time while increasing the crosslink density and the abrasive wear resistance. Further, the compounds with both modified soybean oils showed a good balance of mechanical properties. The modified soybean oils decreased the glass transition temperature of the rubber compounds, thus acting as true plasticizers. At 0°C, the tan δ value of E-SBR/BR/OEPX increased relative to that of E-SBR/BR/ONAF, whereas at 60°C, the values of the compounds with both modified soybean oils showed slight increases. The tan δ values reveal that compared with E-SBR/BR/ONAF, E-SBR/BR/OEPX has better wet grip and a similar rolling resistance, whereas E-SBR/BR/OEST has a higher rolling resistance. Thus, both modified soybean oils can fully replace ONAF and appear to be extremely attractive plasticizers for use in silica-filled E-SBR/BR compounds employed as green tire treads for passenger cars.


2019 ◽  
pp. 000-000
Author(s):  
Qing-Yuan Han ◽  
Xu Li ◽  
Yu-Chun Li ◽  
You-Ping Wu

ABSTRACT The compatibility between solution polymerized styrene–butadiene rubber (SSBR 2466) and natural rubber (NR) is characterized by differential scanning calorimetry and dynamic mechanical thermal analysis. The single glass transition in the entire temperature range of all NR/SSBR blends and good correlation between Tg and SSBR fraction prove the excellent compatibility between SSBR 2466 and NR. With increasing SSBR content, a reduced Payne effect, more homogeneous dispersion of silica, stronger rubber–filler interaction, and more silica selectively distributed in the SSBR phase were determined via rubber-processing analysis, transmission electron microscopy, bound rubber, and thermogravimetric analysis, respectively. The high vinyl content, low styrene content, and end-functionalized structure of SSBR play vital roles in promoting its compatibility with NR and a stronger rubber–silica linkage. The resulting increased tan δ at 0 °C and low tan δ at 60 °C indicates good wet-skid resistance and low rolling resistance by blending SSBR 2466, and 70/30 NR/SSBR is the best balance for producing a “green tire” tread.


2016 ◽  
Vol 89 (4) ◽  
pp. 608-630 ◽  
Author(s):  
Jiaxi Li ◽  
Avraam I. Isayev ◽  
Xiaofeng Ren ◽  
Mark D. Soucek

ABSTRACT Precipitated silica- and carbon black (CB)-filled styrene-butadiene rubber (SBR) compounds and vulcanizates containing naphthenic oil (NO), soybean oil (SO), and modified soybean oil (MSO) were studied. Gel fraction; crosslink density; bound rubber fraction; curing behavior; and thermal, mechanical, and dynamic properties were compared. Interaction between SO, MSO, and silane coupling agent was also studied. It was shown that the incorporation of SO and MSO had similar effects in both silica- and CB-filled SBR compounds and vulcanizates. SO and MSO were found to consume curatives leading to a lower crosslink density and improved thermal stability of compounds and vulcanizates. In comparison with NO, MSO was found to increase the elongation at break and tensile strength, and the values of tan δ at 10 °C and 60 °C predict an increase of the wet traction performance and the rolling resistance to decrease the modulus and abrasion resistance. After adjusting the recipe, the modulus and abrasion resistance of the silica- and CB-filled SBR/MSO vulcanizates were tremendously increased, and the silica-filled SBR/MSO vulcanizates exhibited a better wet traction performance, a lower rolling resistance, and a better abrasion resistance simultaneously than the silica-filled SBR/NO vulcanizate.


2017 ◽  
Vol 90 (3) ◽  
pp. 508-520 ◽  
Author(s):  
Amirhossein Mahtabani ◽  
Mohammad Alimardani ◽  
Mehdi Razzaghi-Kashani

ABSTRACT The present study discusses that filler–filler mechanical engagement resulting from the grafted long-chain silanes on the silica surface is indeed a reinforcing mechanism in rubber composites, as already speculated by nonlinear viscoelastic properties in our previous study. The existence and severity of such a phenomenon are assessed purely by isolating the energetic contribution of reinforcement from interfering with filler mechanical engagement in the silica network formation and breakdown processes. In a novel approach, the driving force of fillers to flocculate energetically at elevated temperatures was defined using surface energy theories, and it was adjusted to be similar in two composites having silica treated by short- and long-chain silanes. Filler–filler mechanical engagement was monitored by tracking network formation (filler flocculation) in a matrix of styrene–butadiene rubber and also by conducting various dynamic viscoelastic experiments on liquid paraffin suspensions having short- and long-chain silica of similar surface energy. Results consistently confirmed the existence of mechanical engagement between silica particles having the long-chain silane in both rubber compounds and paraffin suspensions. The results may find applications in the rolling resistance of tires, for example, where stabilization of the filler network by displacing the peak energy dissipation of the network breakdown from applied service strains to larger values would be of technical importance.


2020 ◽  
Vol 856 ◽  
pp. 169-174
Author(s):  
Chatchatree Thongsaen ◽  
Pongdhorn Sea-Oui ◽  
Chakrit Sirisinha

Solution styrene-butadiene rubber (SSBR) reinforced by hybrid fillers of carbon black (CB) and silica (PSi) was prepared with various CB/PSi ratios. Rheological and mechanical properties of rubber compounds and vulcanisates were investigated. Results of compounds demonstrate that, with increasing CB fraction, increases in the magnitude of the Payne effect and Mooney viscosity were found. On the contrary, with increased loading of PSi, increases in optimum cure time (tc90) and cure torque difference were evidenced. The results suggest superiority in filler dispersion level and cure efficiency in the systems filled with high PSi fraction due to the presence of Bis [3-(triethoxysilyl) propyl] tetrasulphide (TESPT or Si-69) as a silane coupling agent. As for vulcanisate properties, the systems with increased PSi fraction exhibit enhancement in mechanical strength and elastic contribution, which are in good agreement with rubber compound properties. Also, the decrease in loss factor at 60 °C was observed with increasing PSi fraction, suggesting the desirable reduction in rolling resistance of tyre tread.


2021 ◽  
Vol 317 ◽  
pp. 300-304
Author(s):  
Mazlina Mustafa Kamal

In recent years, automotive hose and belt specifications have changed, requiring longer product life in terms of swelling, wear and heat ageing. Diene-based rubbers, such as natural rubber (NR) and styrene-butadiene rubber (SBR), have been widely used in diverse industries. However, some apparent defects such as limited ageing resistance and large compression set, have been demonstrated in some rubbers cured by sulfur or peroxides. In the making of general and industrial rubber goods, short production and sufficient scorch time is crucial especially by using an injection moulding. In this work, blend of Epoxidised Natural Rubber (ENR 25) and Butadiene was developed with two types of curing systems namely Conventional and Efficient Vulcanisation system. The aim of the study is to produce a satisfactory heat resistance rubber compounds and adequate process safety for rubber manufacturing. Results showed that curing system applied significantly affected thermal stability property of the compounds. Modulus and hardness of the blends appeared to decrease progressively with ageing. However, greater thermal stability especially ageing at 100°C for 200h was observed with compound containing efficient curing system compared to conventional curing system which corresponded to the cross link density attributed by the torque value and dynamic mechanical analysis. The results on stiffness however was effected by the curing system applied. The influence of cure temperature on the chemical crosslink density on both cure systems are being investigated. The network results will be correlated with the technical properties.


2014 ◽  
Vol 1024 ◽  
pp. 175-178
Author(s):  
Mazlina Mustafa Kamal ◽  
Dayang Habibah Abang Asmawi

Since the introduction of the so-called Green Tyre concept, in the early 90ies, the use of silica as reinforcing fillers has spread and grown worldwide. The general advantages of silica as reinforcing filler over carbon black filler are better rolling resistance by achieving at least equal wet traction while tread wear should not be adversely affected. One way to obtain both low rolling resistance and high wet traction is indeed, to use precipitated silica together with solution polymers in tyre treads. The benefits of reinforcement by silane coupled silicas, in certain blends of solution styrene –butadiene rubber (SBR) and butadiene rubber (BR), were recognized by major tyre manufacturer. However, the use of silica compounds entails considerable disadvantages in terms of raw material costs and processability (before vulcanization). These difficulties include higher compound Mooney Viscosity (ML1+4) that increases upon storage, short scorch time and environmental problems related to alcohol evolution. The high viscosity and poor processability in silica filled rubber compounds are believed to be associated with silica reaggregation (self aggregation) after rubber compounding. The study has been made of the effect of increased mixing stage and dispersion agent in rubber on uncured properties of the Silica Filled Epoxidised Natural Rubber Compounds. In this experiment, two orders of mixing were considered (1) Two Stages Mixing and (2) Three Stages Mixing. Results showed that filler dispersion, Mooney Viscosity and Payne Effect was influenced by the degree of mixing. The incorporation of dispersion agents in the compounds also resultant in the similar manner. It is believed that the dispersion agent could coat the silica surfaces as they are being broken down during the mixing and then stabilize the dispersed structure by stearically preventing silica reagglomeration.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1820 ◽  
Author(s):  
Haijun Ji ◽  
Hui Yang ◽  
Liwei Li ◽  
Xinxin Zhou ◽  
Lan Yin ◽  
...  

Ester-functionalized styrene-butadiene rubber (dibutyl itaconate-styrene-butadiene rubber) (D-ESBR) was synthesized by low-temperature emulsion polymerization using dibutyl itaconate (DBI) as a modified monomer containing ester groups. Nonpetroleum-based silica with hydroxy groups was used as a filler to enhance the D-ESBR, which can provide excellent mechanical properties, low rolling resistance, and high wet skid resistance. During the preparation of the silica/D-ESBR nanocomposites, a hydrogen-bonding interface was formed between the hydroxy groups on the surface of silica and the ester groups in the D-ESBR macromolecules. As the content of ester groups in the D-ESBR increases, the dispersion of silica in the nanocomposites is gradually improved, which was verified by rubber process analyzer (RPA) and scanning electron microscopy (SEM). Overall mechanical properties of the silica/D-ESBR modified with 5 wt % DBI were improved and became superior to that of the non-modified nanocomposite. Compared with the non-modified silica/D-ESBR, the DBI modified silica/D-ESBR exhibited a lower tan δ value at 60 °C and comparable tan δ value at 0 °C, indicating that the DBI modified silica/D-ESBR had lower rolling resistance without sacrificing wet skid resistance.


2017 ◽  
Vol 44 (6) ◽  
pp. 9-14
Author(s):  
A.M. Vagizov ◽  
G.R. Khusainova ◽  
I.G. Akhmetov ◽  
A.G. Sakhabutdinov

The influence of the concentration of an initiating system consisting of n-butyllithium and an amine-containing modifier on the copolymerisation of 1,3-butadiene and styrene in a hexane solvent was studied. The molecular characteristics and the microstructure of specimens of the obtained solution-polymerised styrene butadiene rubber (s-SBR) were determined by gel permeation chromatography on a Breeze liquid chromatograph (Waters) and by IR spectroscopy on a Spectrum GX 100 spectrometer (PerkinElmer) in accordance with ISO 21561/2. It was shown that a reduction in the amount of the initiating system is accompanied with a reduction in the copolymerisation rate and in the monomer conversion, and also with an increase in the average molecular weights of the copolymer. It was established that a reduction in the initiating system concentration in the reaction medium leads to a reduction in the content of 1,2-units in the rubber. A comparative analysis of data for rubber compounds based on the synthesised s-SBR and data for rubber compounds based on standard rubber indicates that their mechanical properties are at the same level. However, the tg δ at 60°C (determined on an RPA 2000 instrument) for rubber compounds based on a trial specimen has a lower value, which will make it possible to produce tyre rubbers providing a lower tyre rolling resistance.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Selin Sökmen ◽  
Katja Oßwald ◽  
Katrin Reincke ◽  
Sybill Ilisch

High compatibility and good rubber–filler interactions are required in order to obtain high quality products. Rubber–filler and filler–filler interactions can be influenced by various material factors, such as the presence of processing aids. Although different processing aids, especially the plasticizers, and their effects on compatibility have been investigated in the literature, their influence on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE) oil content and its addition time on interactions between silica and rubber chains were investigated in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of TDAE can influence the development of bounded rubber structure and the interfacial interactions, especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased Shore A hardness and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document