scholarly journals METAL COMPLEXES AS NEW PRO-ECOLOGICAL CROSSLINKING AGENTS FOR CHLOROPRENE RUBBER BASED ON HECK COUPLING REACTION

2019 ◽  
Vol 92 (3) ◽  
pp. 589-597 ◽  
Author(s):  
Anna Dziemidkiewicz ◽  
Martyna Pingot ◽  
Magdalena Maciejewska

ABSTRACT The influence of new pro-ecological curing agents on the crosslinking process of chloroprene rubber (CR) was examined. The proposed curing system used a simpler recipe (no need to apply harmful products such as zinc oxide and ethylene thiourea) and cost less than standard metal oxides. It was expected that the mechanism of crosslinking would be similar to that of Heck-type reactions. Heck-type reactions are powerful tools for the creation of new C=C bonds. They provide the simplest and most efficient way to synthesize a variety of important compounds used in many areas, such as pharmaceuticals, antioxidants, ultraviolet absorbers, and industrial applications. However, despite their wide application, Heck-type reactions have not been used in the rubber industry so far. Rubber blends containing acetylacetonates with different transition metals as new crosslinking agents were filled with fumed silica Aerosil 380 or carbon black Corax N-550. It was found that metal complexes are active crosslinking agents of the CR composites. The obtained vulcanizates were characterized by a high degree of crosslinking and good mechanical properties. Considering the high tensile strength and degree of crosslinking, iron acetylacetonate was the most effective curing agent of the used metal complexes. Compared with the reference sample cured with metal oxides, the CR samples crosslinked using metal acetylacetonates had a higher activity.

2019 ◽  
Vol 77 (8) ◽  
pp. 4131-4146 ◽  
Author(s):  
Aleksandra Smejda-Krzewicka ◽  
Anna Olejnik ◽  
Krzysztof Strzelec

Abstract This paper discusses the role of metal oxides (MeO) in the cross-linking process and useful properties of chloroprene and butadiene rubber (CR/BR) blends. Iron(III) oxide (Fe2O3), iron(II,III) oxide (Fe3O4), silver(I) oxide (Ag2O) or zinc oxide were used. It has found that every proposed metal oxide can be used as a cross-linking agent of the CR/BR blends. The degree of cross-linking was evaluated by means of vulcametric parameters, equilibrium swelling in selected solvents and Mooney–Rivlin elasticity constants. The properties of the cured CR/BR products, such as tensile strength, stress at elongation, tension set under constant elongation and compression set, were also investigated. The results revealed that all CR/BR/MeO vulcanizates were characterized by a high cross-linking degree and satisfying mechanical properties. The most important advantage of obtained rubber goods is very high resistance to flame. The increase in the oxygen index value for the CR/BR/Fe2O3, CR/BR/Fe3O4 and CR/BR/Ag2O vulcanizates compared to the standard cross-linked chloroprene rubber showed that presented metal oxides provided a positive effect on the resistance to flame of the new CR/BR/MeO composites. Satisfactory properties of the studied blends are related to the presence of the interelastomer bonding of both rubbers in the compositions.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 807 ◽  
Author(s):  
Anna Dziemidkiewicz ◽  
Magdalena Maciejewska

The commonly used curing system for chloroprene rubber (CR) is a combination of two metal oxides, such as magnesium oxide (MgO) and zinc oxide (ZnO). Application of MgO and ZnO enables to obtain a good balance between processability of rubber compounds and mechanical properties of the vulcanizates. Despite high activity in crosslinking reactions, ZnO is classified as ecotoxic to aquatic organisms, thus environmental legislation requires its quantity in technology to be limited. In our studies more environmentally friendly curing systems were applied, which enabled eliminating ZnO from CR compounds. These curing systems consisted of manganese acetylacetonate (Mn(acac)) or nickel acetylacetonate (Ni(acac)) and triethanolamine (TEOA) used as a base necessary to perform Heck’s reaction. Both metal acetylacetonates exhibited high activity in crosslinking reactions, which was confirmed by a great torque increment during rheometric measurements and high degree of elastomer crosslinking. The type of metal acetylacetonate and the amount of TEOA seemed to have less influence on the efficiency of the curing system than the filler used. Rubber compounds filled with carbon black (CB) were characterized by definitely shorter optimal vulcanization times and higher degree of crosslinking compared to CR composites filled with nanosized SiO2. Moreover, application of the proposed curing systems allowed to obtain CR vulcanizates with mechanical properties comparable with the benchmarks cured with metal oxides.


2020 ◽  
Vol 16 ◽  
Author(s):  
Meghshyam K. Patil ◽  
Vijay H. Masand ◽  
Atish K. Maldhure

: Schiff bases and their complexes are versatile compounds, which have been synthesized from the condensation of carbonyl compounds with amino compounds and exhibit a broad range of applications in biological, medicinal, catalysis, and industrial purposes. Furthermore, Schiff base-metal complexes have been used as a precursor for the synthesis of different metal oxides, which includes oxides of iron, cobalt, copper, nickel, manganese, vanadium, cadmium, zinc, mercury, etc. and ferrites such as Fe3O4, ZnFe2O4, and ZnCo2O4. These metal oxides have been utilized for several applications, which includes as a catalyst for several organic transformations and for biological activity. This review encompasses different methods of synthesis of metal oxides using Schiff base metal complexes precursor, their characterization, and various applications in detail.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng-Ying Jiang ◽  
Kai-Fang Fan ◽  
Shaoyu Li ◽  
Shao-Hua Xiang ◽  
Bin Tan

AbstractAs an important platform molecule, atropisomeric QUINOL plays a crucial role in the development of chiral ligands and catalysts in asymmetric catalysis. However, efficient approaches towards QUINOL remain scarce, and the resulting high production costs greatly impede the related academic research as well as downstream industrial applications. Here we report a direct oxidative cross-coupling reaction between isoquinolines and 2-naphthols, providing a straightforward and scalable route to acquire the privileged QUINOL scaffolds in a metal-free manner. Moreover, a NHC-catalyzed kinetic resolution of QUINOL N-oxides with high selectivity factor is established to access two types of promising axially chiral Lewis base catalysts in optically pure forms. The utility of this methodology is further illustrated by facile transformations of the products into QUINAP, an iconic ligand in asymmetric catalysis.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček ◽  
Ondřej Kratina

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.


RSC Advances ◽  
2014 ◽  
Vol 4 (102) ◽  
pp. 58816-58825 ◽  
Author(s):  
Bharat P. Kapgate ◽  
Chayan Das

The strong CR/in situ silica interaction causes filler accumulation at the interphase and enhances the compatibility and reinforcement in the NR/CR blend.


2016 ◽  
Vol 49 (5) ◽  
pp. 381-396 ◽  
Author(s):  
Farzad A Nobari Azar ◽  
Murat Şen

Natural rubber/chloroprene rubber (NR/CR) blends are among the commonly used rubber blends in industry and continuously are exposed to severe weather changes. To investigate the effects of accelerator type on the network structure and stress relaxation of unaged and aged NR/CE vulcanizates, tetramethyl thiuram disulfide, 2-mercaptobenzothiazole, and diphenyl guanidine accelerators have been chosen to represent fast, moderate, and slow accelerator groups, respectively. Three batches have been prepared with exactly the same components and mixing conditions differing only in accelerator type. Temperatures scanning stress relaxation and pulse nuclear magnetic resonance techniques have been used to reveal the structural changes of differently accelerated rubber blends before and after weathering. Nonoxidative thermal decomposition analyses have been carried out using a thermogravimetric analyzer. Results indicate that there is a strong interdependence between accelerator type and stress relaxation behavior, network structure, cross-linking density, and aging behavior of the blends. Accelerator type also affects decomposition energy of the blends.


Sign in / Sign up

Export Citation Format

Share Document