Therapeutic effect of certain Indian medicinal compounds against the Corona Virus: An in-silico study

Author(s):  
Sakshi Nand ◽  
Neelabh Neelabh

Introduction: Since Covid-19 has emerged as a pandemic, it has taken innumerable lives and caused havoc in the developing as well as developed countries. The health facilities throughout the world have taken a toll and to counter this some immediate alternative measures have to be taken. Utilization of the plant-based products from the Indian traditional medicine can be one such measure. Methods: NCBI, Pubchem and PDB databases were used to obtain the structures of the relevant protein targets and plant-based ligands. Apart from this, softwares such as Open Babel, UCSF Chimera, PatchDock and FireDock were used for the purpose of interconversion of file formats, visualization of the structures and docking respectively. Results: After the screening of 9 plant-based products against the 3 main protein targets (spike protein, hemagglutinin, nucleocapsid) of corona virus we found that glucoraphanin showed the best binding energy against spike protein (-51.44 KJ/mol), alpha amyrin showed the best binding energy against hemagglutinin (-31.76 KJ/mol) and beta-sitosterol showed best binding energy against nucleocapsid (-55.44 KJ/mol). Conclusion: This study would aid in the speedy recovery and better immune response of the corona virus infected patients.

2020 ◽  
Author(s):  
endang naryono

Covid-19 or the corona virus is a virus that has become a disaster and a global humanitarian disaster began in December 2019 in Wuhan province in China, April 2020 the spread of the corona virus has spread throughout the world making the greatest humanitarian disaster in the history of human civilization after the war world II, Already tens of thousands of people have died, millions of people have been infected with the conona virus from poor countries, developing countries to developed countries overwhelmed by this virus outbreak. Increasingly, the spread follows a series of measurements while patients who recover recover from a series of counts so that this epidemic becomes a very frightening disaster plus there is no drug or vaccine for this corona virus yet found, so that all countries implement strategies to reduce this spread from social distancing, phycal distancing to with a city or country lockdown.


Author(s):  
Ashish Shah ◽  
Vaishali Patel ◽  
Bhumika Parmar

Background: Novel Corona virus is a type of enveloped viruses with a single stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. Objective: We had selected 30 phytoconstituents from the different plants which are reported for antiviral activities against corona virus (CoVs) and performed insilico screening to find out phytoconstituents which have potency to inhibit specific target of novel corona virus. Methods: We had perform molecular docking studies on three different proteins of novel corona virus namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. Results: We had screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin using insilico approach. All compounds found safe in insilico toxicity studies. Bioactivity prediction reviles that these all compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had higher binding affinity for the target PLpro and Spike protein. Conclusion: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ephraim Fass ◽  
Gal Zizelski Valenci ◽  
Mor Rubinstein ◽  
Paul J. Freidlin ◽  
Shira Rosencwaig ◽  
...  

The changing nature of the SARS-CoV-2 pandemic poses unprecedented challenges to the world's health systems. Emerging spike gene variants jeopardize global efforts to produce immunity and reduce morbidity and mortality. These challenges require effective real-time genomic surveillance solutions that the medical community can quickly adopt. The SARS-CoV-2 spike protein mediates host receptor recognition and entry into the cell and is susceptible to generation of variants with increased transmissibility and pathogenicity. The spike protein is the primary target of neutralizing antibodies in COVID-19 patients and the most common antigen for induction of effective vaccine immunity. Tight monitoring of spike protein gene variants is key to mitigating COVID-19 spread and generation of vaccine escape mutants. Currently, SARS-CoV-2 sequencing methods are labor intensive and expensive. When sequence demands are high sequencing resources are quickly exhausted. Consequently, most SARS-CoV-2 strains are sequenced in only a few developed countries and rarely in developing regions. This poses the risk that undetected, dangerous variants will emerge. In this work, we present HiSpike, a method for high-throughput cost effective targeted next generation sequencing of the spike gene. This simple three-step method can be completed in < 30 h, can sequence 10-fold more samples compared to conventional methods and at a fraction of their cost. HiSpike has been validated in Israel, and has identified multiple spike variants from real-time field samples including Alpha, Beta, Delta and the emerging Omicron variants. HiSpike provides affordable sequencing options to help laboratories conserve resources for widespread high-throughput, near real-time monitoring of spike gene variants.


2019 ◽  
Vol 74 (10) ◽  
pp. 2865-2869 ◽  
Author(s):  
Houyem Elghaieb ◽  
Ana R Freitas ◽  
Mohamed Salah Abbassi ◽  
Carla Novais ◽  
Mohamed Zouari ◽  
...  

Abstract Objectives The epidemiology of Enterococcus resistant to priority antibiotics including linezolid has mainly been investigated in developed countries and especially in hospitals. We aimed to evaluate the contribution of different non-human reservoirs for the burden of MDR enterococci in Tunisia, where scarce data are available. Methods Samples (n = 287) were collected from urban wastewater (n = 57), retail meat (n = 29; poultry/bovine/ovine), milk (n = 89; bovine/ovine), farm animal faeces (n = 80; poultry/bovine/ovine) and pets (n = 32; rabbit/dogs/cats/birds) in different Tunisian regions (2014–17). They were plated onto Slanetz–Bartley agar after pre-enrichment without antibiotics. Standard methods were used for bacterial identification and characterization of antibiotic resistance and virulence genes (PCR), antibiotic susceptibility testing (disc diffusion/broth microdilution; EUCAST/CLSI) and clonality (SmaI-PFGE/MLST). Results All samples carried Enterococcus (n = 377 isolates) resistant to antibiotics considered to be critical or highly important by WHO. Even without antibiotic selection, 38% of Enterococcus faecalis (Efs) and 22% of Enterococcus faecium (Efm) were identified as MDR. Linezolid-resistant isolates (5%; MIC = 8 mg/L) comprised six poxtA-carrying Efm (cow milk), seven optrA-carrying Efs (chicken faeces/meat) and five Efm lacking cfr/optrA/poxtA (poultry/bovine/ovine/wastewater). Clinically relevant Efm clones (clade A1) were identified in animal/meat sources. Ampicillin resistance (1%) was confined to ST18/ST78-like MDR Efm clones from bovine meat/milk samples carrying relevant virulence markers (e.g. ptsD/IS16). Conclusions This study provides evidence of the contribution of livestock and foodstuffs to the dispersal of acquired linezolid resistance genes including poxtA and optrA. We report the first poxtA-carrying Efm in Tunisia, and for the first time in bovine samples, stressing the urgent need for alternative measures to counteract the spread of linezolid-resistant enterococci globally.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1539
Author(s):  
Paco Pino ◽  
Joeri Kint ◽  
Divor Kiseljak ◽  
Valentina Agnolon ◽  
Giampietro Corradin ◽  
...  

The spike protein of the pandemic human corona virus is essential for its entry into human cells. In fact, most neutralizing antibodies against Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) are directed against the Virus-surface exposed spike protein, making it the antigen of choice for use in vaccines and diagnostic tests. In the current pandemic context, global demand for spike proteins has rapidly increased and could exceed hundreds of grams to kilograms annually. Coronavirus spikes are large heavily glycosylated homo-trimeric complexes, with inherent instability. The poor manufacturability now threatens the availability of these proteins for vaccines and diagnostic tests. Here, we outline scalable, Good Manufacturing Practice (GMP) compliant, and chemically defined processes for the production of two cell-secreted stabilized forms of the trimeric spike proteins (Wuhan and D614G variant). The processes are chemically defined and based on clonal suspension-CHO cell populations and on protein purification via a two-step scalable downstream process. The trimeric conformation was confirmed using electron microscopy and HPLC analysis. Binding to susceptible cells was shown using a virus-inhibition assay. The diagnostic sensitivity and specificity for detection of serum SARS-CoV-2-specific-immunoglobulin molecules was found to exceed that of spike fragments (Spike subunit-1, S1 and Receptor Binding Domain, RBD). The process described here will enable production of sufficient high-quality trimeric spike protein to meet the global demand for SARS-CoV-2 diagnostic tests and potentially vaccines.


Author(s):  
Fadilah Fadilah ◽  
Arry Yanuar ◽  
Ade Arsianti ◽  
Retnosari Andrajati ◽  
Erni Hernawati Purwaningsih

Objective: Apoptosis is one method the body uses to get rid of unneeded or abnormal cells, but cancer cells have strategies to avoid apoptosis. Apoptosis inducers can get around these strategies to cause the death of cancer cells.Methods: We screened some derivatives aryl eugenol based on their interactions with Bcl-2 in many cancer tissues, using computer software applications (in silico method) to determine the best compounds. The docking experiment on Bcl-2 (Protein Data Bank ID 4LXD) was carried out by suitably positioning the energy-minimized ligand in the active site while carefully monitoring non-bonded interactions of the ligand enzyme.Results: The resulting ligand-receptor complex was docked using the Autodock Vina software. Docking results based free binding energy, EUGACl (21), EUASABr (17), EUGEABr (19), and EUASACL (17), has the lowest binding energy than navitoclax and binds significantly to BCL 2. In silico ADMET predictions revealed that except SA, ASA, and GEA, all other compounds had minimal toxic effects and had good absorption as well as solubility characteristics.Conclusion: These compounds of aryl eugenol (17, 19, and 21) may serve as a potential lead compound for developing new anticancer as apoptosis inducers.


2021 ◽  
Vol 6 (3) ◽  
pp. 01-13
Author(s):  
Abdul Gbaj

Thymus capitatus extract has been considered a promise as antiviral agent against COVID‑19 viruses. We hypothesized that Thymus capitatus components may interact with key protein targets of COVID‑19 (coronavirus 2 (SARS-CoV-2) causing severe acute respiratory syndromes. Molecular docking analysis was carried out using 31 components of Thymus capitatus with SARS-CoV-2 protease enzyme (6LU7) and spike glycoprotein (6VSB). The compounds with the best normalized docking scores to protease enzyme were allo-Aromadendrene (-6.3 kcal/mole), spathulenol (-6.6 kcal/mole) and ledene (-6.8 kcal/mole). The best docking ligands for spike glycoprotein were allo-Aromadendrene (-6.6 kcal/mole), spathulenol (-6.6 kcal/mole) and ledene (-7.3 kcal/mole). All Thymus capitatus components may act synergistically to produce the therapeutic action. Thymus capitatus components may potentiate the effect of prednisolone, azithromycin and other medicines used to treat COVID-19 patients.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Sheylla Fatizah

Corona Virus Disease-19 (COVID-19) began to spread to various parts of the world since December 2019, which was first discovered in Wuhan, China. Of course this has brought great disaster to 216 countries in the world, because no country is immune to this virus and the epidemic has spread to various continents and attacked many aspects of the world community. Distressing conditions like this require the state to play a stronger role by providing better service protection. In addition, conditions like this raise big questions about how countries in the world deal with this. In the midst of the COcVID-19 pandemic, many scientists are racing to quickly find an effective vaccine to fight this virus. An example of one that succeeded is the discovery of Sinovac or called CoronaVac, where this vaccine is the result of research from Sinovac Biotech Co. which is a biopharmaceutical company focused on research, development, manufacture and commercialization of vaccines, and the company is based in Beijing, China. Seeing the COVID-19 pandemic that is increasingly paying attention, especially in developing countries, many countries are pressing for the temporary waiver of COVID-19 vaccine patents during this crisis. The reason is none other than so that production can be accelerated so that it is expected to be able to handle the COVID-19 pandemic. Of course this raises a polemic between developed countries and developing countries where there are two different interests, one country protects its investors and the other one protects its people. From this we can see that COVID-19 leaves a lot of room for its own problems.


Author(s):  
SENTHIL PRABHU S ◽  
SATHISHKUMAR R ◽  
KIRUTHIKA B

Objective: At present, the coronavirus disease (COVID)-19 pandemic is increasing global health concerns. This coronavirus outbreak is caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2. Since, no specific antiviral for treatment against COVID-19, so identification of new therapeutics is an urgent need. The objective of this study is to the analysis of lichen compounds against main protease and spike protein targets of SARS-CoV-2 using in silico approach. Methods: A total of 108 lichen compounds were subjected to ADMET analysis and 14 compounds were selected based on the ADMET properties and Lipinski’s rule of five. Molecular docking was performed for screening of selected individual lichen metabolites against the main protease and spike proteins of SARS-CoV-2 by Schrodinger Glide module software. Results: Among the lead compounds, fallacinol showed the highest binding energy value of −11.83 kcal/mol against spike protein, 4-O-Demethylbarbatic acid exhibited the highest dock score of −11.67 kcal/mol against main protease. Conclusion: This study finding suggests that lichen substances may be potential inhibitors of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document