Spatial variation of valuable bacterial enzymes in soil: A case study from different agro ecological zones of West Bengal, India

Author(s):  
Subarna Bhattacharyya ◽  
◽  
Jayita Chopra ◽  
Rashmi Khushboo Minz ◽  
Mousumi Chakraborty ◽  
...  

The spatial variability of cellulase, amylase, protease and pectinase activities were evaluated from four zones of West Bengal, India. The enzyme production data was plotted on the map of the study areas and spatial variability of cellulase, amylase, protease and pectinase activity was obtained. Available nitrogen of the soil was the most variable parameter with changing enzyme activity. It also varied with the available phosphorus but the variation was least with organic carbon content of the soil. Amylase was correlated with pectinase, available nitrogen and phosphorus. Cellulase was correlated with only available nitrogen; protease was correlated with pectinase and Pectinase was correlated with available nitrogen of the soil of the four sampling zone. Except protease activity, other enzymes were significantly correlated with bacterial density of the soil. These findings ultimately develop relationship among soil major nutrients and the map can be used for future enzyme bioprospecting in West Bengal, India.

2021 ◽  
Author(s):  
Wenchun He ◽  
Yang Wang ◽  
Xiaochen Wen ◽  
Yu Wang ◽  
Baoru Xiao ◽  
...  

Abstract The growth of fine roots of trees is affected by environmental changes and biological factors. At present, there have been many researches on the physiological plasticity of fine roots caused by environmental changes, but there are still few studies on the influence of biological factors on fine roots. This paper focused on the contents of carbon (C), nitrogen (N), and phosphorus (P), and their ecological stoichiometric ratios in different root orders of Cupressus funebris fine roots in 11 mixed stands with Koelreuteria paniculate or Toona sinensis at different ratios, and the effects of soil physical and chemical properties on the root chemical properties. It aimed to provide new insights into the fine-root nutrient distribution pattern and the transformation or reconstruction of low-efficiency pure forests from the standpoint of forest types. The results showed that: soil pH, and the content of available nitrogen (SAN), available phosphorus (SAP) and available potassium (SAK) differed significantly in the tested mixed forest stands. No significant differences in carbon content of fine roots were observed in different mixed stands. The content of nitrogen and phosphorus in fine roots in mixed forests showed heterogeneity. Species mixing changed the C/N, C/P and N/P of the C. funebris compared the pure stands. The "T. sinensis + C. funebris" forest alleviated the limitation of the lack of phosphorus on fine roots of C. funebris on. The principal component analysis showed that mixed stands of "T. sinensis + C. funebris" had the highest comprehensive score at ratio of "3:1". Thus, our results recommended the adoption of T. sinensis, especially at 75%, to reconstruct the low-efficiency pure C. funebris forest.


2018 ◽  
Vol 10 (4) ◽  
pp. 1238-1242
Author(s):  
Ashish Rai ◽  
Surendra Singh

Soil fertility status of the intensively vegetables growing in black soils of Varanasi (UP), India is not available. Therefore, present study was under-taken to assess the fertility status by collecting 100 surface (0-15 cm depth) soil samples using geographical positioning system (GPS). Soil samples were analysed following standard methods. The pH of the surface soils ranged from 7.3 to 8.4 with a mean of 7.9 indicating alkaline nature of soil. The EC of the soils were normal and ranged from 0.17 to 0.48 dS m-1 with mean value of 0.30 dS m-1. The organic carbon content of the soils ranged from 3 to 9 g kg-1 with a mean of 5.8 g kg-1. The range (mean) values of available N, P and K were 106 to 291 (184), 8 to 65 (27) and 145 to 358 (229) kg ha-1, respectively. The soils were found 99% low in available N content and nutrient index rating of available P was found high. The range (mean) values of B, Zn, Cu, Fe and Mn were, 0.11 to 0.53 (0.40), 0.38 to 3.04 (1.08), 0.22 to 1.96 (0.79), 2.9 to 16.40 (8.42) and 0.68 to 12.64 (3.24) mg kg-1 soil, respectively. The available sulphur of the soils ranged from 7 to 33 mg S kg-1 with mean of 15 mg S kg-1 soil. Soils were categorised in to low, medium and high status, subsequently 99 % soils were found low in available nitrogen whereas 63% soil samples were found medium in available phosphorus, and 88% were medium in available potash. 26, 48 and 26% soils were low, medium and high in S, respectively and the corresponding Figs. for B were 90, 10 and 0%. In case of cationic micronutrients, 7, 58 and 35% soils were low, medium and high in Zn and the corresponding Figs. for Available Mn were 30, 44 and 26%. Fe was found 6, 59 and 35% in low, medium and high category respectively. There was no copper deficiency found in black soils of Varanasi.


2016 ◽  
Vol 8 (1) ◽  
pp. 321-328
Author(s):  
Umalaxmi Thingujam ◽  
Sajal Pati ◽  
Rubina Khanam ◽  
Arnab Pari ◽  
Krishnendu Ray ◽  
...  

A field experiment was carried out at the Central Research Farm, Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India to study the effects of integrated nutrient management on the nutrient accumulation (dry weight recoveries) in brinjal and plant nutrient status of the post- harvest soil of brinjal under Nadia conditions. The results revealed that the treatment consisting of 75% RDF (RDF i.e. N:P:K:: 125:100:50) + Azospirillum + phosphate solubilising bacteria (PSB) + Borax @ 10 kg ha-1 recorded the highest oxidizable organic carbon (8.049 g kg-1), total nitrogen (1.05 g kg-1) , available nitrogen (212.67g kg-1), available phosphorus (76.20g kg-1) and available potassium (177.59 g kg-1) in the post harvest soils of brinjal. On the other hand, 75% RDF + Azospirillum + PSB + FeSO4 @ 50 kg ha-1 recorded the highest available iron (26.14 kg ha-1) and the treatment consisting of 75% RDF + Azospirillum + PSB + ZnSOâ‚„ @ 25 kg ha-1 recorded the highest soil available zinc (7.62 kg ha-1) while 75% RDF + Azo + PSB + Borax @ 10 kg ha-1 recorded the highest available Boron content (0.78 kg ha-1) of the post harvest soil of Brinjal. Highest brinjal yield (14.96 t ha-1) was supported by the treatment consisting of 75% RDF + Azospirillum + PSB + Boron @ 10 Kg ha-1. Meager information was available regarding the performance of integrated application of organics and micronutrient on brinjal in the experimental location. The present study may enlighten this unexplored section of nutrient management in brinjal.


Agropedology ◽  
2019 ◽  
Vol 27 (1) ◽  
Author(s):  
R. Srinivasan ◽  
◽  
D. C. Nayak ◽  
S. K. Singh ◽  
◽  
...  

The distribution of nutrients were studied in six soil management units identified viz., Chandipur, Biprodaspur, Pathankhali, Manmathanagar-I, Manmathanagar-II and Bhupendranagar of Gosaba block (part) of sundarbans ecosystem. Data indicated that the soils were strongly acidic (< 4.5) to neutral in reaction and associated with marginal to severe salinity (> 13.3 dS m-1). The organic carbon content ranged from 0.67 to 1.66% in surface and 0.15 to 3.44% in sub-soils. The available nitrogen content varied from 90 to 502 kg ha-1 and it changed significantly with depth. The available phosphorus varied from 0.5 to 24.7 kg ha-1. Available potassium and sulphur in soils are very high, ranging from 178 to 572 kg ha-1 and 25 to 706 mg kg-1 respectively. DTPA -Fe and Mn varied from 18.9 to 336 and 2.17 to 37.6 mg kg-1 in soils being higher in sub-surface horizons, and DTPA- Zn and Cu ranged 0.27 to 4.73 and 0.63 to 14.5 mg kg-1 respectively.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 757
Author(s):  
Vera Rajičić ◽  
Vera Popović ◽  
Vesna Perišić ◽  
Milan Biberdžić ◽  
Zoran Jovović ◽  
...  

The objectives of this study were to investigate: (1) the effects of fertilization, environment, and their interactions on the thousand grain weight (TGW), hectolitre weight (HW) and grain yield (GY) of winter triticale, and (2) the correlations between these traits in different environments. The invariable nitrogen (80 kg N ha−1), potassium (60 kg K2O ha−1) and two phosphorus (60 and 100 kg P2O5 ha−1) doses were used in Kragujevac location in central Serbia. Nitrogen was applied individually and in combination with two phosphorus rates and one rate of potassium fertilizer. Eight fertilization treatment controls and N80, P60, P100, N80P60K60, N80P100K60, N80P60 and N80P100 were examined during three growing seasons. The yield and quality of triticale significantly varied across years and treatments. The average yield of all treatments in the 2015 growing season was significantly greater than in the previous years (3.597 t ha−1). Combined usage of NPK fertilizer (80 kg N ha−1, 100 kg P2O5 ha−1 and 60 kg K2O ha−1) represented the excellent base for optimum supply of major nutrients, resulting in maximum GY (4.0 t ha−1). Negative and significant correlation was found between grain GY and TGW (−0.392*) in 2015, and positive highly significant correlation were in 2013 (0.648**) and 2014 (0.493**). The positive effect over complete application of fertilizer is the result of a lower pH value of the soil, as well as the low content of available phosphorus and potassium in Vertisol soil type. Optimizing fertilization for maximum profitability is of great importance in the future triticale production in Pannonian Environments.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1610
Author(s):  
Iwona Jaskulska ◽  
Joanna Lemanowicz ◽  
Barbara Breza-Boruta ◽  
Anetta Siwik-Ziomek ◽  
Maja Radziemska ◽  
...  

In 2019, 71 years after the establishment of a static fertiliser experiment, the chemical and biological properties of Luvisol soil with sandy-loam grain-size composition were determined. Soil samples were taken from six fertilised treatments: half-dose nitrogen, phosphorus and potassium in mineral fertilisers (½ NPK); full-dose nitrogen, phosphorus, potassium (NPK); manure fertilisation + nitrogen, phosphorus, potassium, magnesium and liming (FYM NPK Mg Ca); manure + mineral fertilisers without magnesium and liming (FYM NPK); manure + nitrogen and phosphorus (FYM NP); manure + nitrogen and potassium (FYM NK). The soil was tested in two layers at depths of 0–20 cm and 20–40 cm. Soil samples were tested for: pH in 1 M KCl (pH); electrical conductivity (EC); organic carbon content (OC); content of available phosphorus (Pa), potassium (Ka), magnesium (Mga) and sulphate sulphur (S-SO4); total number of bacteria (Bt), cellulolytic microorganisms (Bc), fungi (Ff) and actinomycetes (Ac); and alkaline phosphatase (AlP), acid phosphatase (AcP) and arylsulphatase (ArS) activity. The fertilisation that most favourably affected the chemical and biological properties of the soil was FYM NPK Mg Ca. This fertilisation increased: pH and EC; OC, Ka and Mga contents; Bt and Bc abundance; and AlP activity relative to all the methods of mineral and organic–mineral fertilisation that did not include all the ingredients of mineral fertilisers. On the other hand, the least favourable soil properties were formed by ½ NPK fertilisation in the 0–20 cm layer, and by the long-term use of mineral fertilisers only in the 20–40 cm layer.


2021 ◽  
Vol 904 (1) ◽  
pp. 012053
Author(s):  
S J H Dwenee ◽  
A S Falih ◽  
F O K Alghrairi ◽  
A F Hassan ◽  
S A Khudair ◽  
...  

Abstract A field experiment was carried out for three season 2017, 2018 and 2019 to investigate the role of some types of organic field residues (crop, tree and shrubs and orchard residues) in soil organic carbon built up and improving the soil fertility within conditions of salt stresses. Treatments were added based on their organic carbon content, to reach 1.0%, supplementing the organic carbon already present in the soil. The results showed that the percentage of loss in organic carbon differs according to the added organic residues. The percentage of the organic carbon remaining in the soil for season 2017 after harvest was 0.542%, 0.794%, 0.728% and 0.642% for control, crop residues, tree residues and shrubs and residues of orchards, respectively. In order to maintain the organic carbon ratio up to 1.0%, it was necessary to add organic residues in the following season 2018 in quantities of 0.742, 1.074 and 1.537 kg/m2, down from the initial addition in 2017 by 55.79%, 41.63% and 23.18%. In the 2019 season, the addition amounted to 0.537, 0.691 and 1.108 kg/m2, down from the initial addition in 2017 by 68.03%, 62.44% and 44.64% for the treatments, crop, tree and shrubs and orchard residues, respectively. The addition of orchard residue treatment showed a significant difference in the yield of straw and grains in all years of implementation of the experiment, at a rate of 18.67%, 7.38% and 11.22% in 2017, with a rate of 13.68%, 1.74% and 8.67% in 2018, at a rate of 17.11%, 3.44% And 6.59% in 2019 for control, tree and shrubs residues and crop residues, respectively. The addition of organic wastes improved the soil fertility for three years of study, as the salinity decreased by 16.65% and the total nitrogen, organic carbon, available nitrogen, available potassium and available phosphorus increased by 22.91%, 42.36%, 33.01%, 30.86% and 32.95%, respectively.


Author(s):  
T. Pandiaraj ◽  
Susmita Das ◽  
Manjappa . ◽  
Alok Sahay

This study was conducted to evaluate soil fertility status in the fourteen major tasar sericulture adopting villages in Purulia District, West Bengal. For this, a total of 160 surface soil samples (0-30 cm) were collected from dominant tasar sericulture villages along with the details regarding farmer’s name, soil type, host plants details, etc. The collected samples were air dried, sieved and analysed for various soil fertility parameters such as pH, EC, organic carbon, macro and micronutrients. The data on various parameters were categorized into low, medium and high classes based on soil fertility ratings and nutrient index was calculated. Results revealed that soil reaction in the study area varied from strongly acidic to moderately acidic with saline free soil. The available nitrogen was low level in all the tasar host plant growing regions. In all the study regions, medium range of available phosphorus, potassium and sulphur was observed. All the micronutrients were high in the study villages. Regard NIV, all the macronutrients except nitrogen showed medium nutrient index in most places. Fertility rate of available micro nutrients were high index in all the tasar growing villages.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 579 ◽  
Author(s):  
T. Nkheloane ◽  
A. O. Olaleye ◽  
R. Mating

Wetlands are complex ecosystems, often exhibiting considerable spatial variability, making the understanding of soil spatial relationships within them difficult. A study was conducted to evaluate spatial variability of soil physico-chemical properties in two contrasting wetlands in two agro-ecological zones (AEZs) of Lesotho. Soil samples were collected along two transects in mini-pits dug at different depths at 50-m intervals. The collected samples were analysed for particle size, pH, soil organic carbon (SOC), SOC pool, available phosphorus (Av-P), cation exchange capacity (CEC), and base cations. Results showed that within-site variability was very low for sand particles and pH (coefficient of variation <15% for both properties). Soil physical properties generally showed less spatial heterogeneity than chemical properties, which differed widely within and between the study sites. There was generally low correlation between soil properties, and SOC accounted for most of the variation observed at both sites, especially T’sakholo with partial R2 = 94%; at Thaba-Putsoa, partial R2 = 44%. Geostatistical analysis showed that all of the nugget to sill ratios (NSR) showed strong spatial dependence (i.e. NSR of 54–94%) except SOC (T’sakholo stream-bank) with no spatial dependence, with the nugget accounting for 23.43%. We therefore conclude that further wetland studies in Lesotho should attempt to quantify not only the soil properties or processes under investigation but also their spatial variability, because this spatial variability can provide insight into underlying ecosystem processes and may itself indicate wetland condition. In addition, results of stepwise multiple regression showed that SOC and texture could be used across these sites for the sustainable management of these wetlands.


2013 ◽  
Vol 59 (No. 6) ◽  
pp. 280-286 ◽  
Author(s):  
Z. Guo ◽  
Wang DZ

To investigate the effects of returning wheat straw to croplands on soil compaction and nutrient availability, this trial was designed: (1) planted crops without fertilization (NF); (2) natural land without human activities (CT); (3) applied mineral fertilizers in combination with 7500 kg/ha wheat straw (WS-NPK); (4) applied mineral fertilizers in combination with 3750 kg/ha wheat straw (1/2WS-NPK); and (5) applied mineral fertilizers alone (NPK). It is found that, compared with NPK, the soil bulk density in 1/2WS-NPK and WS-NPK both decreased by more than 10% in the 0 cm to 15 cm layer, and by 6.93% and 9.14% in the 15 cm to 20 cm, respectively. Furthermore, in contrast to NPK, the soil available nitrogen in the 0 cm to 25 cm layer in 1/2WS-NPK and WS-NPK were higher by 17.43% and 35.19%, and the soil available potassium were higher by 7.66% and 17.47%, respectively. For soil available phosphorus in the depth of 5 cm to 25 cm, it was higher by 18.51% in 1/2WS-NPK and by 56.97% in WS-NPK, respectively. Therefore, returning wheat straw to croplands effectively improves soil compaction and nutrients availability, and the improvement in soil nitrogen and phosphorus availability is closely related to the amount of wheat straw.


Sign in / Sign up

Export Citation Format

Share Document