scholarly journals Chemotherapy of Prostate Cancer by Targeted Nanoparticles Trackable by Magnetic Resonance Imaging

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Mohamed O. Abdalla ◽  
Timothy Turner ◽  
Clayton Yates

Prostate cancer (CaP) is the commonest diagnosed malignancy and the second main cause of cancer mortality in males in the United States. Thus, there is an urgent need to develop novel drug delivery systems to improve the chemotherapy option for CaP patients. The goal of this paper is to describe novel moleculary guided nanoscale drug delivery system with dual functionality for treatment and MR imaging of CaP. We describe the synthesis of iron oxide nanoparticles (IONPs) which are then coated with carboxyl-ended amphiphilic polymer. We present the protocol for tethering of the CaP targeting protein, human amino terminal fragment (hATF) to the terminal carboxyls of the IONPs. We describe the drug loading and release and the methods for measuring of the internalization of the hATF-guided IONPs into CaP cells. We also describe the methods for usages of IONPs are MR imaging contrast agent and successful targeted drug carriers.

Author(s):  
Shah Esha Bhavin ◽  
Gajjar Anuradha

Background: Nanotechnology is the need of the hour! The design of nanotechnology aided carriers as a tool for the delivery of low solubility molecules offers a potential platform to overcome the issues of current clinical treatment and achieve good targeted release and bioaccessibility. Objective: Nanosponges (NS) are encapsulating type of nanocarriers capable of carrying both lipophilic and hydrophilic substances. They are synthesized by mixing a solution of polyester which is biodegradable with cross linkers. These tiny porous structures are round shaped having multiple cavities wherein drugs can be housed to offer programmable release. Method: The detailed literature review and patent search summarize the ongoing research on NS. Substances such as poorly soluble drugs, nutraceuticals, gases, proteins and peptides, volatile oils, genetic material, etc. can be loaded on these novel carriers, which are characterized using various analytical techniques. Target-specific drug delivery and controlled drug release are the advantages offered by NS along with a myriad of other promising applications. Results: This review stresses on the development of cyclodextrin based NS, the synthetic methods and characterization of NS along with factors affecting NS formation, their applications and information on the patented work in this area. NS are solid in character and can be formulated in various dosage forms such as parenteral, topical, oral or inhalation. Conclusion: Therefore, owing to their promising benefits over other nanocarriers in terms of drug loading, adaptability, sustainability, solubility and tailored release profile, NS are immediate technological revolution for drug entrapment and as novel drug carriers. The authors expect that these fundamental applications of NS could help the researchers to develop and gain insight about NS in novel drug delivery applications.


2020 ◽  
Vol 26 (33) ◽  
pp. 4174-4184
Author(s):  
Marina P. Abuçafy ◽  
Bruna L. da Silva ◽  
João A. Oshiro-Junior ◽  
Eloisa B. Manaia ◽  
Bruna G. Chiari-Andréo ◽  
...  

Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption have already been comprehensively described in recent years; it is time to demonstrate their potential applications in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery systems and diagnostic agents.


2017 ◽  
Vol 18 (11) ◽  
Author(s):  
Rohit R. Bhosale ◽  
H. V. Gangadharappa ◽  
Umme Hani ◽  
Riyaz Ali M. Osmani ◽  
Rudra Vaghela ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Shuyuan Li ◽  
Yue Tang ◽  
Yushun Dou

Background: Exosomes, one of the extracellular vesicles, are widely present in all biological fluids and play an important role in intercellular communication. Because of its hydrophobic lipid bilayer and aqueous hydrophilic core structure, it is considered a possible alternative to liposome drug delivery systems. Not only do they protect the cargo like liposomes during delivery, they are less toxic and better tolerated. However, due to the lack of sources and methods for obtaining enough exosomes, the therapeutic application of exosomes as drug carriers is limited. Methods: A literature search was performed using the ScienceDirect and PubMed electronic databases to obtain information from published literature on milk exosomes related to drug delivery. Results: Here, we briefly reviewed the current knowledge of exosomes, expounded the advantages of milk-derived exosomes over other delivery vectors, including a higher yield, the oral delivery characteristic and additional therapeutic benefits. The purification and drug loading methods of milk exosomes, and the current application of milk exosomes were also introduced. Conclusion: The emergence of milk-derived exosomes is expected to break through the limitations of exosomes as therapeutic carriers of drugs. We hope to raise awareness of the therapeutic potential of milk-derived exosomes as a new drug delivery system.


2021 ◽  
Vol 18 ◽  
Author(s):  
Raja Murugesan ◽  
Sureshkumar Raman

: At present treatment methods for cancer are limited, partially due to the solubility, poor cellular distribution of drug molecules and, the incapability of drugs to annoy the cellular barriers. Carbon nanotubes (CNTs) generally have excellent physio-chemical properties, which include high-level penetration into the cell membrane, high surface area and high capacity of drug loading by in circulating modification with bio-molecules, project them as an appropriate candidate to diagnose and deliver drugs to prostate cancer (PCa). Additionally, the chemically modified CNTs which have excellent 'Biosensing' properties therefore makes it easy for detecting PCa without fluorescent agent and thus targets the particular site of PCa and also, Drug delivery can accomplish a high efficacy, enhanced permeability with less toxic effects. While CNTs have been mainly engaged in cancer treatment, a few studies are focussed on the diagnosis and treatment of PCa. Here, we detailly reviewed the current progress of the CNTs based diagnosis and targeted drug delivery system for managing and curing PCa.


2011 ◽  
Vol 236-238 ◽  
pp. 1770-1774
Author(s):  
Yan Ling Guo ◽  
Bao Qi Wang ◽  
Jun Zhao ◽  
Zhao Shan Cui

Polyethylene Glycol Oleate was synthesized by esterification of polyethylene glycol and Oil acid using DMAP as a catalyst. The double bonds of the product in the core of micelles were cross-linked by the initiation of (NH4)2S2O8 during the micelles formed. Applications of the noncross-linked and cross-linked polyethylene glycol oleate in drug delivery were studied, which indicates that drug efficiency decreased after micelles were core cross-linked, but release rate of MTX from core cross-linked micelles seems slower than that from noncross-linked micelles.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pin Chen ◽  
Xin Wang ◽  
Yan Dong ◽  
Xiaohong Hu

Hydrogel is a kind of attractive drug carriers because of its good biocompatibility and transparency. But traditional hydrogel showed some restrictions in its application in ocular drug delivery. A simple surface modification technique based on layer-by-layer (LbL) self-assembled multilayer for ocular drug delivery was developed in this work. Polycarboxymethyl-β-cyclodextrin (poly(CM-β-CD))/poly-l-lysine (PLL) multilayer film was designed and constructed for ocular drug delivery, sinceβ-CD showed good drug delivery property. The properties such as the contact angle and transparency varied a little with the deposition of poly(CM-β-CD)/PLL multilayer. Orfloxacin and puerarin were loaded into multilayer during the self-assembly procedure by two methods, which were tracked by the largest drug absorbance of UV spectrum. The loaded drug amount by incorporating drugs into poly(CM-β-CD) solution was larger than that by incorporating drugs into PLL solution. The loaded drug in the multilayer could gradually be released from multilayer in some period either for orfloxacin or for puerarin. The drug release behavior was influenced by drug loading method and pH value of released medium. Moreover, the balanced released drug amount by incorporating drugs into poly(CM-β-CD) solution is much smaller than that by incorporating drugs into PLL solution.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Zhongjian Fang ◽  
Houchao Xu ◽  
Xiangjun Ji ◽  
Congbiao Liu ◽  
Kai Wang ◽  
...  

The past two decades have witnessed the great growth of the development of novel drug carriers. However, the releasing dynamics of drug from drug carriers in vivo and the interactions between cells and drug carriers remain unclear. In this paper, liposomes were prepared to encapsulate D-luciferin, which was the substrate of luciferase and served as a model drug. Based on the theoretical calculation of active loading, methods of preparation for liposomes were optimized. Only when D-luciferin was released from liposomes or taken in by the cells could bioluminescence be produced under the catalysis of luciferase. Models of multicellular tumor spheroid (MCTS) were built with 4T1-luc cells that expressed luciferase stably. The kinetic processes of uptake and distribution of free drugs and liposomal drugs were determined with models of cell suspension, monolayer cells, MCTS, and tumor-bearing nude mice. The technology platform has been demonstrated to be effective for the study of the distribution and kinetic profiles of various liposomes as drug delivery systems.


2017 ◽  
pp. 459-485
Author(s):  
Prabhakar Singh ◽  
Sudhakar Singh ◽  
Rajesh Kumar Kesharwani

In this pharma innovative world, there are more than 30 drug delivery systems. Today's due to lacking the target specificity, the present scenario about drug delivery is emphasizing towards targeted drug delivery systems. Erythrocytes are the most common type of blood cells travel thousands of miles from wide to narrow pathways to deliver oxygen, drugs and nutrient during their lifetime. Red blood cells have strong and targeted potential carrier capabilities for varieties of drugs. Drug-loaded carrier erythrocytes or resealed erythrocytes are promising for various passive and active targeting. Resealed erythrocyte have advantage over several drug carrier models like biocompatibility, biodegradability without toxic products, inert intracellular environment, entrapping potential for a variety of chemicals, protection of the organism against toxic effects of the drug, able to circulate throughout the body, ideal zero-order drug-release kinetics, no undesired immune response against encapsulated drug etc. Resealed erythrocytes are rapidly taken up by macrophages of the Reticuloendothelial System (RES) of the liver, lung, and spleen of the body and hence drugs also. Resealed erythrocytes method of drugs delivery is secure and effective for drugs targeting specially for a longer period of time. This chapter will explain the different method of drug loading for resealed erythrocytes, their characterization, and applications in various therapies and associated health benefits.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Guangman Cui ◽  
Junrong Wu ◽  
Jiaying Lin ◽  
Wenjing Liu ◽  
Peixian Chen ◽  
...  

AbstractBreast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document