scholarly journals Autophagy: New Questions from Recent Answers

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Fulvio Reggiori

Macroautophagy (hereafter autophagy) is currently one of the areas of medical life sciences attracting a great interest because of its pathological implications and therapy potentials. The discovery of the autophagy-related genes (ATGs) has been the key event in this research field because their study has led to the acquisition of new knowledge about the mechanism of this transport pathway. In addition, the investigation of these genes in numerous model systems has revealed the central role that autophagy plays in maintaining the cell homeostasis. This process carries out numerous physiological functions, some of which were unpredicted and thus surprising. Here, we will review some of the questions about the mechanism and function of autophagy that still remain unanswered, and new ones that have emerged from the recent discoveries.


2015 ◽  
Vol 29 (09) ◽  
pp. 1530003 ◽  
Author(s):  
Andrea Maria Chiariello ◽  
Simona Bianco ◽  
Andrea Piccolo ◽  
Carlo Annunziatella ◽  
Mariano Barbieri ◽  
...  

Understanding the mechanisms that control the organization of chromosomes in the space of the nucleus of cells, and its contribution to gene regulation, is a key open issue in molecular biology. New technologies have shown that chromosomes have a complex 3D organization, which dynamically changes across organisms and cell types. To understand such complex behaviors, quantitative models from polymer physics have been developed, to find the principles of chromosome folding, their origin and function. Here, we provide a short review of recent progress in such an important research field where Physical and Life Sciences meet.



Author(s):  
Margarita Jimenez-Palomares ◽  
Alba Cristobal ◽  
Mª Carmen Duran Ruiz

Organoids have arisen as promising model systems in biomedical research and regenerative medicine due to their potential to reproduce the original tissue architecture and function. In the research field of cell–cell interactions, organoids mimic interactions taking place during organogenesis, including the processes that conduct to multi-lineage differentiation and morphogenetic processes, during immunology response and disease development and expansion. This chapter will address the basis of organoids origin, their importance on immune system cell–cell interactions and the benefits of using them in biomedicine, specifically their potential applications in regenerative medicine and personalized therapy. Organoids might represent a personalized tool for patients to receive earlier diagnoses, risk assessments, and more efficient treatments.



Author(s):  
Caili Li ◽  
Meizhen Wang ◽  
Xiaoxiao Qiu ◽  
Hong Zhou ◽  
Shanfa Lu

Background: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. Objective: This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. Results and Conclusion: So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.



PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0170197 ◽  
Author(s):  
Nadine Nelson ◽  
Karoly Szekeres ◽  
Cristina Iclozan ◽  
Ivannie Ortiz Rivera ◽  
Andrew McGill ◽  
...  


1963 ◽  
Vol s3-104 (68) ◽  
pp. 505-512
Author(s):  
L. T. THREADGOLD

The cuticle of light microscopy is shown by electron microscopy to be a surface layer of protoplasm which is an extension of areas of nucleated protoplasm lying deep in the parenchyma. The cuticle therefore exists at two levels. The external level is syncytial, consisting of plateaux separated by branching valleys. This level contains apical pinocytotic vesicles, numerous mitochondria, endoplasmic membranes, large basal and other vacuoles, and dense spines. Tube-like evaginations from the base of the external level connect it to the individual areas of flask-shaped protoplasm which compose the internal level. Each of these areas of protoplasm contains a nucleus, great numbers of mitochondria, some vacuoles and diffuse inclusions, and the Golgi bodies. The histochemistry and function of the cuticle is discussed in the light of this new knowledge of cuticular ultrastructure, and a comparison is made between the cuticle of Cestoda and Trematoda.



2011 ◽  
Vol 11 ◽  
pp. 1243-1269 ◽  
Author(s):  
Irena Conic ◽  
Irena Dimov ◽  
Desanka Tasic-Dimov ◽  
Biljana Djordjevic ◽  
Vladisav Stefanovic

The last decade witnessed an explosion of interest in cancer stem cells (CSCs). The realization of epithelial ovarian cancer (EOC) as a CSC-related disease has the potential to change approaches in the treatment of this devastating disease dramatically. The etiology and early events in the progression of these carcinomas are among the least understood of all major human malignancies. Compared to the CSCs of other cancer types, the identification and study of EOC stem cells (EOCSCs) is rather difficult due to several major obstacles: the heterogeneity of tumors comprising EOCs, unknown cells of origin, and lack of knowledge considering the normal ovarian stem cells. This poses a major challenge for urgent development in this research field. This review summarizes and evaluates the current evidence for the existence of candidate normal ovarian epithelial stem cells as well as EOCSCs, emphasizing the requirement for a more definitive laboratory approach for the isolation, identification, and enrichment of EOCSCs. The present review also revisits the ongoing debate regarding other cells and tissues of origin of EOCs, and discusses early events in the pathogenesis of this disease. Finally, this review discusses the signaling pathways that are important regulators of candidate EOCSC maintenance and function, their potential role in the distinct pathogenesis of different EOC subtypes, as well as potential mechanisms and clinical relevance of EOCSC involvement in drug resistance.



1995 ◽  
Vol 4 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Olle Lindvall

Cell transplantation is now being explored as a new therapeutic strategy to restore function in the diseased human central nervous system. Neural grafts show long-term survival and function in patients with Parkinson's disease but the symptomatic relief needs to be increased. Cell transplantation seems justified in patients with Huntington's disease and, at a later stage, possibly also in demyelinating disorders. The further development in this research field will require systematic studies in animal experiments but also well-designed clinical trials in small groups of patients.



Parasitology ◽  
2009 ◽  
Vol 136 (14) ◽  
pp. 1935-1942 ◽  
Author(s):  
F. TRIPET

SUMMARYThere has been a recent shift in the literature on mosquito/Plasmodium interactions with an increasingly large number of theoretical and experimental studies focusing on their population biology and evolutionary processes. Ecological immunology of mosquito-malaria interactions – the study of the mechanisms and function of mosquito immune responses to Plasmodium in their ecological and evolutionary context – is particularly important for our understanding of malaria transmission and how to control it. Indeed, describing the processes that create and maintain variation in mosquito immune responses and parasite virulence in natural populations may be as important to this endeavor as describing the immune responses themselves. For historical reasons, Ecological Immunology still largely relies on studies based on non-natural model systems. There are many reasons why current research should favour studies conducted closer to the field and more realistic experimental systems whenever possible. As a result, a number of researchers have raised concerns over the use of artificial host-parasite associations to generate inferences about population-level processes. Here I discuss and review several lines of evidence that, I believe, best illustrate and summarize the limitations of inferences generated using non-natural model systems.



2001 ◽  
Vol 281 (3) ◽  
pp. F443-F453 ◽  
Author(s):  
Paul A. Nony ◽  
Grazyna Nowak ◽  
Rick G. Schnellmann

Collagen IV is found in the renal proximal tubular cell (RPTC) basement membrane and is a mediator of renal development and function. Pharmacological concentrations ofl-ascorbic acid phosphate (AscP) promote the repair of physiological functions in RPTC sublethally injured by S-(1,2-dichlorovinyl)-l-cysteine (DCVC). We hypothesized that AscP promotes RPTC repair by stimulating collagen IV synthesis and/or deposition. RPTC exhibited increased synthesis but decreased deposition of collagen IV after DCVC exposure. In contrast, RPTC cultured in pharmacological concentrations of AscP maintained collagen IV deposition. The activity of prolyl hydroxylase was decreased in RPTC after DCVC injury, an effect that was partially attenuated in injured RPTC cultured in pharmacological concentrations of AscP. The addition of exogenous collagen IV to the culture media of DCVC-injured RPTC promoted the repair of mitochondrial function and Na+-K+-ATPase activity. However, neither collagen I, laminin, nor fibronectin promoted cell repair. These data demonstrate an association between AscP-stimulated deposition of collagen IV and exogenous collagen IV and repair of physiological functions, suggesting that collagen IV plays a specific role in RPTC repair after sublethal injury.



2020 ◽  
Vol 176 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Vicki L Sutherland ◽  
Charlene A McQueen ◽  
Donna Mendrick ◽  
Donna Gulezian ◽  
Carl Cerniglia ◽  
...  

Abstract There is an increasing awareness that the gut microbiome plays a critical role in human health and disease, but mechanistic insights are often lacking. In June 2018, the Health and Environmental Sciences Institute (HESI) held a workshop, “The Gut Microbiome: Markers of Human Health, Drug Efficacy and Xenobiotic Toxicity” (https://hesiglobal.org/event/the-gut-microbiome-workshop) to identify data gaps in determining how gut microbiome alterations may affect human health. Speakers and stakeholders from academia, government, and industry addressed multiple topics including the current science on the gut microbiome, endogenous and exogenous metabolites, biomarkers, and model systems. The workshop presentations and breakout group discussions formed the basis for identifying data gaps and research needs. Two critical issues that emerged were defining the microbial composition and function related to health and developing standards for models, methods and analysis in order to increase the ability to compare and replicate studies. A series of key recommendations were formulated to focus efforts to further understand host-microbiome interactions and the consequences of exposure to xenobiotics as well as identifying biomarkers of microbiome-associated disease and toxicity.



Sign in / Sign up

Export Citation Format

Share Document