Characterization and Electrical Properties of [C6H9N2]2CuCl4 Compound
We report measurements of X-ray powder diffraction, vibrational study, the differential scanning calorimetry (DSC), and the electric properties of a made-up [C6H9N2]2CuCl4 sample. The alternative current (ac) conductivity of the compound [C6H9N2]2CuCl4 has been measured in the temperature range 356–398 K and the frequency range 209 Hz–5 MHz. The Cole-Cole (the imaginer part (Z′′) versus real part (Z′) of impedance complex) plots are well fitted to an equivalent circuit model which consists of a parallel combination of a bulk resistance (R) and constant phase elements (CPE). The single semicircle indicates only one primary mechanism for the electrical conduction within [C6H9N2]2CuCl4. The variation of the value of these elements with temperatures confirmed the result detected by DSC and dielectric measurements. Thus the conduction in the material is probably due to a hopping or a small polaron tunneling process.