scholarly journals Sophorolipids: A review on production and perspectives of application in agriculture

2020 ◽  
Vol 18 (3) ◽  
pp. e03R01
Author(s):  
Maria Antonia P. C. Celligoi ◽  
Victória A. I. Silveira ◽  
Amanda Hipólito ◽  
Talita O. Caretta ◽  
Cristiani Baldo

Sophorolipids are bioactive molecules that have gained a lot of attention in the recent decades due to their unique functional properties of reducing surface and interfacial tension, emulsification and solubilization. They are mainly produced by the yeast Candida bombicola and are composed of a sugar moiety linked to a fatty acid chain. Sophorolipids are non-toxic, highly efficient and stable at extreme conditions and possess environmentally friendly characteristics over the chemical surfactants. This review is focused on the main characteristics of sophorolipids, fermentation processes, and their utilization in the agricultural field. In this context, sophorolipids are very suitable for use in agriculture, as enhancers of solubility and mobility of plant nutrients, which could result in increased plant biomass, root size and fruit yield. In addition, they could be used for biodegradation of oils, bioremediation of heavy metals in contaminated soils, and as potential biopesticides, to control phytopathogenic microorganisms in agriculture. The extensive use of chemical pesticides has led to widespread insecticide resistance and to hazards to human health and the environment due to their high toxicity. Thus, the introduction of a new biomolecule to control plant diseases and increase crop yield has become an interesting alternative. As a result of the demonstrated antimicrobial activity towards phytopathogenic bacteria and fungi, sophorolipids could be extensively explored in the agriculture field, as a sustainable and natural multifunctional agent for plant crops and soils.

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 558
Author(s):  
Ismail A. Ismail ◽  
Sameer H. Qari ◽  
Rady Shawer ◽  
Moustafa M. Elshaer ◽  
Eldessoky S. Dessoky ◽  
...  

Even though the green revolution was a significant turning point in agriculture, it was also marked by the widespread use of chemical pesticides, which prompted severe concerns about their influence on human and environmental health. As a result, the demand for healthier and more environmentally friendly alternatives to control plant diseases and avoid food spoilage is intensifying. Among the proposed alternatives, food by-product extracts, especially from the most consumed fruits in Egypt, eggplant, sugar apple, and pomegranate peel wastes, were largely ignored. Hence, we chose them to evaluate their antifungal and antiaflatoxigenic activities against maize fungus, Aspergillus flavus. All the extracts exhibited multiple degrees of antifungal growth and aflatoxin B1 (AFB1) inhibitory activities (35.52% to 91.18%) in broth media. Additionally, diethyl ether 50% eggplant, ethanol 75% sugar apple, and diethyl ether 25% pomegranate extracts exhibited the highest AFB1 inhibition, of 96.11%, 94.85%, and 78.83%, respectively, after one month of treated-maize storage. At the same time, Topsin fungicide demonstrated an AFB1 inhibition ratio of 72.95%. The relative transcriptional levels of three structural and two regulatory genes, aflD, aflP, aflQ, aflR, and aflS, were downregulated compared to the infected control. The phenolic content (116.88 mg GAEs/g DW) was highest in the 25% diethyl ether pomegranate peel extract, while the antioxidant activity was highest in the 75% ethanol sugar apple extract (94.02 µg/mL). The most abundant active compounds were found in the GC-MS analysis of the fruit peel extracts: α-kaurene, α-fenchene, p-allylphenol, octadecanoic acid, 3,5-dihydroxy phenol, hexestrol, xanthinin, and linoleic acid. Finally, the three fruit peel waste extracts could be a prospective source of friendly ecological compounds that act as environmentally safer and more protective alternatives to inhibit AFB1 production in maize storage.


2021 ◽  
pp. 1-16
Author(s):  
Heba Mahmoud Mohammad Abdel‐Aziz ◽  
Mohammed Nagib Abdel‐ghany Hasaneen

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 60
Author(s):  
Vincenzo Michele Sellitto ◽  
Severino Zara ◽  
Fabio Fracchetti ◽  
Vittorio Capozzi ◽  
Tiziana Nardi

From a ‘farm to fork’ perspective, there are several phases in the production chain of fruits and vegetables in which undesired microbial contaminations can attack foodstuff. In managing these diseases, harvest is a crucial point for shifting the intervention criteria. While in preharvest, pest management consists of tailored agricultural practices, in postharvest, the contaminations are treated using specific (bio)technological approaches (physical, chemical, biological). Some issues connect the ‘pre’ and ‘post’, aligning some problems and possible solution. The colonisation of undesired microorganisms in preharvest can affect the postharvest quality, influencing crop production, yield and storage. Postharvest practices can ‘amplify’ the contamination, favouring microbial spread and provoking injures of the product, which can sustain microbial growth. In this context, microbial biocontrol is a biological strategy receiving increasing interest as sustainable innovation. Microbial-based biotools can find application both to control plant diseases and to reduce contaminations on the product, and therefore, can be considered biocontrol solutions in preharvest or in postharvest. Numerous microbial antagonists (fungi, yeasts and bacteria) can be used in the field and during storage, as reported by laboratory and industrial-scale studies. This review aims to examine the main microbial-based tools potentially representing sustainable bioprotective biotechnologies, focusing on the biotools that overtake the boundaries between pre- and postharvest applications protecting quality against microbial decay.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Armina Morkeliūnė ◽  
Neringa Rasiukevičiūtė ◽  
Lina Šernaitė ◽  
Alma Valiuškaitė

The Colletotrichum spp. is a significant strawberry pathogen causing yield losses of up to 50%. The most common method to control plant diseases is through the use of chemical fungicides. The findings of plants antimicrobial activities, low toxicity, and biodegradability of essential oils (EO), make them suitable for biological protection against fungal pathogens. The aim is to evaluate the inhibition of Colletotrichum acutatum by thyme, sage, and peppermint EO in vitro on detached strawberry leaves and determine EO chemical composition. Our results revealed that the dominant compound of thyme was thymol 41.35%, peppermint: menthone 44.56%, sage: α,β-thujone 34.45%, and camphor: 20.46%. Thyme EO inhibited C. acutatum completely above 200 μL L−1 concentration in vitro. Peppermint and sage EO reduced mycelial growth of C. acutatum. In addition, in vitro, results are promising for biological control. The detached strawberry leaves experiments showed that disease reduction 4 days after inoculation was 15.8% at 1000 μL L−1 of peppermint EO and 5.3% at 800 μL L−1 of thyme compared with control. Our findings could potentially help to manage C. acutatum; however, the detached strawberry leaves assay showed that EO efficacy was relatively low on tested concentrations and should be increased.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2682 ◽  
Author(s):  
Francis J. Osonga ◽  
Ali Akgul ◽  
Idris Yazgan ◽  
Ayfer Akgul ◽  
Gaddi B. Eshun ◽  
...  

Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: Aspergillus nidulans, Trichaptum biforme, Penicillium italicum, Fusarium oxysporum, and Colletotrichum gloeosporioides, while the class of bacteria employed include Pseudomonas aeruginosa, Aeromonas hydrophila, Escherichia coli, and Citrobacter freundii as Gram (−) bacteria, and Listeria monocytogenes and Staphylococcus epidermidis as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of A. nidulans growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.


2019 ◽  
Vol 37 ◽  
Author(s):  
M.J. KHAN ◽  
N. AHMED ◽  
W. HASSAN ◽  
T. SABA ◽  
S. KHAN ◽  
...  

ABSTRACT: Phytoremediation is a useful tool to restore heavy metals contaminated soils. This study was carried out to test two castor (Ricinus communis) cultivars [Local and DS-30] for phytoextraction of heavy metals from the soil spiked by known concentrations of seven metals (Cu, Cr, Fe, Mn, Ni, Pb and Zn). A pot experiment was laid out by using a completely randomized design. Soil and plant samples were analyzed at 100 days after planting. The data on heavy metal uptake by plant tissues (roots, leaves and shoots) of the two castor cultivars suggested that a considerable amount of metals (Fe = 27.18 mg L-1; Cu = 5.06 mg L-1; Cr = 2.95 mg L-1; Mn = 0.22 mg L-1; Ni = 4.66 mg L-1; Pb = 3.33 mg L-1; Zn = 15.04 mg L-1) was accumulated in the plant biomass. The soil heavy metal content at the end of experiment significantly decreased with both cultivars, resulting in improved soil quality. Therefore, it is concluded that both castor cultivars, Local and DS-30, can be used for phytoremediation of heavy metal-contaminated sites.


2021 ◽  
Vol 6 (4) ◽  
pp. 369-375
Author(s):  
Rahmawati Budi Mulyani ◽  
Lilies Supriati ◽  
Melhanah Melhanah ◽  
Susi Kresnatita

Lebak swamp weeds such as Kayambang (Salvinia molesta) grow abundantly. They can be used as compost, which effectively improves soil fertility, increasing nutrients N, P, and P K quickly and environmentally friendly. The effectiveness of compost fertilizer needs to be increased by adding indigenous microbes as decomposers and biological agents to control plant diseases. The activities carried out to empower horticultural farmer groups on sandy land in Tanjung Pinang Village, Palangka Raya are through socialization, training in composting with three types of antagonist fungus Trichoderma sp. (Trichocompost), facilitate the procurement of weed chopping machines, assist farmers in horticultural crop cultivation, and increase farmers' independence in self-supporting organic fertilizers. The use of Kayambang as Trichocompost with microbial decomposers and indigenous biological agents is new knowledge for partner farmers. The application of Trichocompost on the demonstration plots shows that eggplant plant growth and yields are excellent, meaning that Trichocompost can improve the fertility of sandy soils. Farmers participating in the training stated that the use of Trichocompost could reduce farming costs because it can substitute for manure that has been used by farmers and can meet the self-help needs of organic fertilizers. Participants wanted an advanced mentoring program because the farmers had not yet mastered the isolation or propagation of biological agents and decomposer microbes.


2020 ◽  
Vol 5 (4) ◽  
pp. 110-120
Author(s):  
Qunshan Wei ◽  
◽  
Bilal . ◽  
Muhammad Noman ◽  
Zhemin Shen ◽  
...  

Many remediating strategies are used for polluted soils, however, but mostly the essential phytoremediation is a less expensive, organically satisfying technique that is generally reasonable for various countries. Pot tests were managed to dissect the Brassica júncea plant biomass cultivated on Pb as well as Cd polluted soils as well to survey its ampleness for the evacuation of Pb and Cd. Samples of picked plants developed at a blend of alluvial soil and sand were moved with vessel of pots the earth finishing extents as well allowed make with time regenerative development. Through acid digestion, Pb and Cd extraction was settled from the plant. Consequently, they were collected and afterwards examined for chosen metals through utilizing Atomic Absorption Spectrometry (AAS). Generally, the current examination results demonstrated that no hyperaccumulators of Pb as well Cd were recognized in the region. Body parts of the plant were categorized as Pb low accumulators, moderate accumulators and excluder, as well as Cd low accumulator, excluder. Additionally, Cd concentration was high up than the allowable range in species of plant. In plants, allowable range of Pb and Cd is 0.2 - 20 and 0.1 -2.4 mg kg – 1. In Brassica júncea plant the Pb as well Cd both were no hyperaccumulators. Hence, this local plant had the suitable ability to use for phytoremediation of contaminated soils around the Hayatabad Industrial area, Peshawar. All experimental Results demonstrated that from the medium of soil by Brassica júncea (L.) Czern plant the maximum lead and cadmium removals were 94 % and 94.26 %, respectively in the open environment, while in the control environment this removal was 82 % for Pb and 93.16 % for Cd .The present research work observes that brassica júncea (L.) Czern plant was more helpful for Cd take-up contrasted with Pb, and thus it is capacity we suggest Pb as well Cd for remediation from polluted soils. Keywords: Lead, Cadmium, Contaminated soil, Removal


2021 ◽  
pp. 429-472
Author(s):  
Dan Funck Jensen ◽  
◽  
Mukesh Dubey ◽  
Birgit Jensen ◽  
Magnus Karlsson ◽  
...  

The fungus Clonostachys rosea was recognized as an aggressive parasite on other fungi already in the late 1950s. Research into its potential use in biological control of plant diseases soon followed. Today, there are several commercial products based on C. rosea available for biocontrol applications worldwide. Although its mycoparasitic ability has attracted a lot of interest, C. rosea is now viewed as an ecological generalist whose lifestyle also includes plant endophytism, rhizosphere competence and polyphagous ability. Protocols for producing high amounts of C. rosea spores are available for both solid state and liquid fermentation. Low temperature and low moisture content are key factors that influence the shelf life of C. rosea propagules. Products based on C. rosea can be delivered to flowers using bumble bees, applied by spraying or as seed dressing or by incorporation into the soil. Clonostachys rosea is today an established factor in sustainable plant protection strategies.


Sign in / Sign up

Export Citation Format

Share Document