scholarly journals Optimization and Nanoreinforcements of Lubricant Concentration for Steel Sheet Forming Process

2021 ◽  
Vol 13 (2) ◽  
pp. 137-142
Author(s):  
Jaime Taha-Tijerina ◽  
◽  
Ruben Calderón ◽  
Bárbara Rodriguez ◽  
◽  
...  

In metal-mechanic industry, lubricants are applied to improve products’ quality and tools useful life, while reducing friction and wear, also removing the generated heat during the material processing. Tribological evaluations are performed varying the water content of two widely used lubricants in automotive metal-forming operations. Evaluations are first performed to determine the optimal lubricant dilutions, followed by reinforcement of 2D-nanostructures of hexagonal Boron Nitride (h-BN). Tribological characterization under extreme pressures (EP) are performed with a four-ball tribometer according to the Institute for Sustainable Technologies –National Research Institute (ITeE-PIB) Polish method under scuffing conditions. The optimized concentrations are determined for Ecodraw and Montgomery lubricants, representing a 28% and 3% improvement in pressure loss limit at 1:8 and 1:6 concentrations, respectively. Block-on-ring tribotest is used to determine the coefficient of friction (COF) of the optimized lubricant dilutions and h-BN nanolubricants, which represent ~10% improvement. These results could be attributed to diverse factors such as a layering mechanism of the 2D nanostructures, soft van der Waals forces between 2D h-BN layers, and the deposition of h-BN on the worn surface, decreasing the shearing stress and COF. Finally, thermal conductivity evaluations showed an enhancement by 30% and 15% with addition of h-BN, demonstrating the potential of 2D nanostructures for improving the efficiency on antiwear and thermal transport.

2018 ◽  
Vol 19 (6) ◽  
pp. 756-760
Author(s):  
Tomasz Trzepieciński ◽  
Irena Nowotyńska

The friction phenomenon existed in almost all plastic working processes, in particular sheet metal forming, is a complex function of the material's properties, parameters of the forming process, surface topography of the sheet and tools, and lubrication conditions. During the stamping of the drawpieces there are zones differentiated in terms of stress and strain state, displacement speed and friction conditions. This article describes the methods for determining the value of the coefficient of friction in selected areas of sheet metal and presents the drawbacks and limitations of these methods.


Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 67 ◽  
Author(s):  
Joel Voyer ◽  
Johann Zehetner ◽  
Stefan Klien ◽  
Florian Ausserer ◽  
Igor Velkavrh

The aim of the present study was firstly to determine the manufacturing feasibility of a specific surface 3D-microtexturing on steel through an ultra-short pulsed laser, and secondly to investigate the tribological properties under 2 different lubrication conditions: oil-lubricated and antifriction coated. The selected 3D-microtexture consisted of 2 different levels of quadratic micropillars having side dimensions of approximately 45 µm, heights of about 35 µm and periods of 80 µm. It was shown that the production of specific 3D-microtextures on steel substrates using an ultra-short pulsed laser was feasible, and that the reproducibility of the texture dimensions over the entire textured region was extremely good. Frictional investigations have shown that, in comparison to the benchmark (untextured samples), the 3D-microtextured samples do not induce any significant improvements in the coefficient of friction (COF) under oil-lubricated conditions, but that under antifriction coated conditions, significant improvements in the friction coefficients may be achieved. Wear-based tribological tests have shown that the antifriction coating on benchmark samples was completely depleted, which greatly influenced their friction and wear behavior, since steel-steel contact occurred during testing. For the 3D-microtexture, the antifriction coating was also partially depleted; however, it accumulated itself in the microtexture which acted as a potential lubricant reservoir.


Lubricants ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 25 ◽  
Author(s):  
Emad Omrani ◽  
Pradeep Menezes ◽  
Pradeep Rohatgi

The tribological behavior of graphene and graphite as additives in canola oil was investigated with a pin-on-disk tribometer. The wear surfaces of the aluminum pins lubricated with the additive-containing canola oil were analyzed by scanning electron microscopy (SEM). It was found that graphene and graphite as additives in oil show a lower coefficient of friction and wear rate in comparison with neat canola oil. The graphene sheets are more effective than graphite flakes to reduce friction and wear. In addition, there is a proper concentration where the coefficient of friction (COF) and wear are in minimum value. The optimal concentration of the additive in canola oil is about 0.7 wt %. Therefore, the load-carrying capacity and antiwear ability of the lubricating oil are improved. Moreover, the worn surface of aluminum pins is smother in the presence of solid lubricant rather than neat oil.


2014 ◽  
Vol 611-612 ◽  
pp. 417-424 ◽  
Author(s):  
Adam Szurdak ◽  
Andreas Rosenkranz ◽  
Carsten Gachot ◽  
Gerhard Hirt ◽  
Frank Mücklich

Friction and wear of lubricated machine elements can be reduced by the introduction of lubrication pockets produced by surface texturing. Different manufacturing methods can be taken into consideration whereas a forming process offers the possibility for mass production. Hot micro coining is a forming process, which allows manufacturing of surface textures with different shapes and dimensions into a flat and deformable material, e.g. seals made of steel. In this work hemispherical and ellipsoid pockets with a maximum depth of 100 µm have been embossed into stainless steel (AISI 304). To ensure that the used process parameters will not lead to tool damage, Finite Element simulations were performed and experimentally verified. First tribological experiments were conducted on a ball-on-disk tribometer in order to study the tribological properties of hemispherical structures with pockets depths of 50 and 100 µm. Different sliding velocities were applied to study the coefficient of friction and wear volume for different lubrication conditions. A comparison between coined and not‑coined specimens demonstrates that the micro coined surface textures lead to a significant reduction in the wear volume at boundary and mixed lubrication conditions.


2018 ◽  
Vol 767 ◽  
pp. 42-58 ◽  
Author(s):  
Laurent Dubar ◽  
André Dubois ◽  
Mirentxu Dubar

Since the beginning of the 90’s, research activities focused on friction and wear in metal forming have been developed at the LAMIH UMR CNRS 8201 in Valenciennes. Specific methodologies have been designed to optimize a given forming process (bulk forming process or sheet forming process). These methodologies involve prototype benches which have been built to reproduce contact conditions encountered in manufacturing plants by taking specimens and contactors from the real industrial workpieces and tools. The evaluation of the friction coefficient added to the fine analysis of the surfaces have helped us to better understand friction and wear during processes. These facilities have been settled by numerical simulation at meso and macro scales by means of finite element methods. So, this paper is the sum up of the output of these methodologies with a specific focus on wear and lubrication, at room and hot temperatures.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Zhiguo Lu ◽  
Chuanyu Du ◽  
Qingcai Chen ◽  
Tianying Niu ◽  
Na Wang ◽  
...  

The friction and wear characteristics of spike-tooth material (65Mn steel) of Spike-Tooth Harrow in a two-stage peanut harvester were studied in this paper. The friction and wear tests of pin and disc on 65 manganese steel were carried out on the tribometer, then the wear loss and the friction coefficient were studied. The wear loss of the pin was acquired by calculating the mass of the pin before and after the experiment using an electronic balance. According to the actual working environment of peanut spring-finger, four variable parameters are set up: load, speed, soil moisture and soil type. The friction and wear characteristics of pins were studied under different loads, speeds and different soil environments. After wearing, the worn surface of the material was observed by scanning microscope and the wear mechanism was studied. The experimental results show that the wear of the pin increases with the increase of load and decreases with the increase of rotational speed in the same rotation number. Especially in the case of the sandy soil with 20% in moisture, a maximum wear loss of the pin is achieved.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Farooq Sher ◽  
Hun Guan Chuah ◽  
...  

This study investigated the tribological behaviour of Pongamia oil (PO) and 15W–40 mineral engine oil (MO) with and without the addition of graphene nanoplatelets (GNPs). The friction and wear characteristics were evaluated in four-ball anti-wear tests according to the ASTM D4172 standard. The morphology of worn surfaces and the lubrication mechanism of GNPs were investigated via SEM and EDS. This study also focuses on the tribological effect of GNP concentration at various concentrations. The addition of 0.05 wt % GNPs in PO and MO exhibits the lowest friction and wear with 17.5% and 12.24% friction reduction, respectively, and 11.96% and 5.14% wear reduction, respectively. Through SEM and EDS surface analysis, the surface enhancement on the worn surface by the polishing effect of GNPs was confirmed. The deposition of GNPs on the friction surface and the formation of a protective film prevent the interacting surfaces from rubbing, resulting in friction and wear reduction.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

Sign in / Sign up

Export Citation Format

Share Document