scholarly journals An in Vitro Antifungal and Antiaflatoxigenic Properties of Commiphora myrrha and Prunus mahaleb

2021 ◽  
Vol 10 (6) ◽  
pp. 10
Author(s):  
Saifeldin A. F. El-Nagerabi ◽  
Mohammed S. R. Al-Maqbali ◽  
Khalid M. S. Alabri ◽  
Abdulkadir E. Elshafie

Aflatoxins and especially aflatoxin B, are the devastating contaminant of food and feed products with hazardous effects to mankind and his domestic animals. These investigations were set to evaluate the effect of various levels of Commiphora myrrha resin (1.0, 1.25, 2.25, and 3.25 g/100 ml) and Prunus mahaleb seed extract (0.75, 1.5, 2.5, and 3.5 g/100 ml) on the growth and aflatoxin secretion by two aflatoxigenic strains of Aspergillus flavus and A. parasiticus. The two plant extracts significantly (p<0.05) decreased aflatoxin secretion, and inhibited the fungal growth. Resin of C. myrrha displayed 51.9-95.7% reduction in total aflatoxin secretion by A. flavus, and 46.9-92% for A. parasiticus, and Seed extract of P. mahaleb decreased aflatoxin up to 53.7-95.8% and 40-94.7%, respectively. The inhibition of aflatoxin B (B1 and B2) by myrrh resin and seed extract of mahaleb ranged between 51.7-93.5, 50-93.6% (A. flavus) and 39.5-89.7%, 37.9-93% (A. parasiticus). The mycelial dry weight of A. flavus and A. parasiticus ws decreased up to 46.1-58.7%, 28.9-51.3% (Myrrh resin), and between 45-56.9%, 33.3-55.9% (Mahaleb seed extract). Nonetheless, the two plant extracts did not detoxify aflatoxin B1. Therefore, it apparent that the resin of C. myrrha and seed extract of P. mahaleb affected the biosynthesis pathway of aflatoxins. Thus, they can be recommended as effective natural plant biopreservative against aflatoxin contamination of food and feed products.

2013 ◽  
Vol 2 (4) ◽  
pp. 68 ◽  
Author(s):  
Saifeldin Ahmed El-nagerabi ◽  
Abdulkadir E. Elshafie ◽  
Mohamed R. Elamin

<p>Aflatoxin and especially aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) is a carcinogenic secondary metabolite synthesized by certain <em>Aspergillus </em>species. They contaminate natural and processed agricultural and animal products which render them unfit for consumption. The aim of this study was to evaluate the <em>in vitro</em> effects of <em>Balanites aegyptiaca</em> and <em>Tamarindus indica</em> fruit extracts on the growth and aflatoxin secretion of <em>Aspergillus flavus</em> (SQU21) and <em>A. parasiticus </em>(CBS921.7) strains. The two fruit extracts significantly (<em>P </em>&lt; 0.05) reduced aflatoxin and did not inhibit mycelial dry weights of the two <em>Aspergillus </em>strains. At different concentrations of balanites (2.5-10%), the inhibition of total aflatoxin was 49.9-84.8% for <em>A. flavus</em> (SQU21) and 32.1-84.4% for <em>A. parasiticus</em> (CBS921.7), whereas the inhibition of aflatoxin Bwas 38.2-81.4% and 32.8-80.6% for the two strains. Tamarind fruit extract (2.5-7.5%) caused 28.8-84.2% and 40.7-85.5% reductions in total aflatoxin and 37.1-83.5% and 33.9-85.9% in aflatoxin B for the two strains, respectively. None of these extracts inhibited the fungal growth or detoxified synthetic aflatoxin B<sub>1</sub>. We have concluded that these fruits contain various inhibitors to aflatoxin biosynthesis and secretion. Therefore, they can be used in combination as safe green biopreservatives to combat aflatoxin contamination of food.</p>


2018 ◽  
Vol 10 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Bárbara Ponzilacqua ◽  
Carlos Humberto Corassin ◽  
Carlos Augusto Fernandes Oliveira

Aflatoxins are secondary metabolites produced by fungi of the genusAspergillus, which occur naturally in cereals like corn, beans and rice. Aflatoxin B1causes an extensive number of toxic effects in animals and humans. This mycotoxin is a stable term and can act in low concentrations due to their higher toxicity. Management to prevent commodities aflatoxin contamination is essential during the production, mainly in pre- and post-harvest steps. A number of essential oils and aqueous plant extracts have been reported to be fungal growth inhibitors and may provide an attractive alternative to prevent aflatoxin contamination in foods. Thus, the aim of this review is to highlight recent data on thein vitroantifungal activity of essential oils and aqueous extracts from plants and discuss the perspectives of their use in food products.


1994 ◽  
Vol 21 (2) ◽  
pp. 130-134 ◽  
Author(s):  
S. M. Basha ◽  
R. J. Cole ◽  
S. K. Pancholy

Abstract An in vitro seed culture system was established to grow peanut seed of different maturities viz. white, yellow, orange, brown and black, using a modified Murashige and Skoog medium. Under this system peanut seed of yellow, orange, brown and black maturity categories grew to maturity as measured by increase in their size and germinability. In vitro cultured seeds produced significant amounts of phytoalexins and were contaminated with aflatoxins following their inoculation with Aspergillus spp. while the noninoculated sterile controls did not produce any phytoalexins. Exposure of seed cultures to water stress using various concentrations of mannitol (0 to 1 M) and polyethylene glycol 8000 (0-30% w/v) caused a significant decrease in their phytoalexin producing ability, and enhanced fungal growth compared to the nonstressed controls. The seeds that were stressed with mannitol and subsequently inoculated with A. flavus and A. parasiticus showed a significant increase in the aflatoxin contamination of stressed seed compared to the unstressed control. This would indicate that in vitro grown seeds responded to water stress similar to the field grown peanuts by loosing their ability to produce phytoalexins and increased susceptibility to aflatoxin contamination. Hence, this system has a potential application in evaluating peanut genotypes for aflatoxin resistance under water stress.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 646 ◽  
Author(s):  
García-Díaz ◽  
Patiño ◽  
Vázquez ◽  
Gil-Serna

Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.


2004 ◽  
Vol 31 (2) ◽  
pp. 124-134 ◽  
Author(s):  
H. Q. Xue ◽  
T. G. Isleib ◽  
G. A. Payne ◽  
G. OBrian

Abstract Contamination of peanut (Arachis hypogaea L.) with aflatoxin produced by species of Aspergillus remains a problem for the U.S. peanut industry. Several peanut genotypes were reported to be resistant to in vitro seed colonization by Aspergillus flavus Link ex Fries (IVSCAF), to field seed colonization by A. flavus (FSCAF), or to preharvest aflatoxin contamination (PAC), but few to production of aflatoxin per se. Cotyledons of 39 peanut genotypes reportedly resistant to IVSCAF, FSCAF, or PAC, and eight susceptible to PAC were evaluated in four tests for their ability to support aflatoxin production after inoculation with A. flavus. Cultivars Perry and Gregory were used as checks in each test. Seed cotyledons were separated, manually blanched, inoculated with conidia of A. flavus, placed on moistened filter paper in petri dishes, and incubated for 8 d at 28 C. Dishes were arranged on plastic trays enclosed in plastic bags and stacked with PVC spacers between trays. Incomplete block designs were used for all tests. In each test, none of the genotypes examined was completely resistant to aflatoxin production, but significant genotypic variation was observed in the amount of total aflatoxin accumulated in seeds. Genotypes previously reported to be resistant to IVSCAF, FSCAF, or PAC exhibited differential abilities to support aflatoxin production. PI 590325, PI 590299, PI 290626, and PI 337409 supported reduced levels of aflatoxin, and their degree of resistance was consistent across tests. Fungal growth was highly correlated with aflatoxin production in three tests. The results from this study suggested that there were no absolute relationships of aflatoxin production resistance with IVSCAF, FSCAF, or PAC resistance, but that it should be possible to identify a genotype with high IVSCAF, FSCAF, or PAC resistance and reduced capacity for aflatoxin production by A. flavus.


2021 ◽  
pp. 1-12
Author(s):  
S.B. Boni ◽  
F. Beed ◽  
M.E. Kimanya ◽  
E. Koyano ◽  
O. Mponda ◽  
...  

Aflatoxins are toxic and carcinogenic secondary metabolites, produced by Aspergillus flavus and Aspergillus parasiticus, which contaminate food and feed and threaten human and animal health. To assess the prevalence of aflatoxins in Tanzania, 180 groundnut and 200 maize samples were collected from 9 and 10 districts, respectively. Aflatoxin contamination was quantified using high performance liquid chromatography. Aflatoxins were detected in samples collected from all districts and prevalence ranged from 92 to 100% for groundnuts and 10 to 80% for maize. The mean aflatoxin level for groundnuts was 6.37 μg/kg and the highly contaminated sample had 40.31 μg/kg. For maize, the mean aflatoxin level was 12.47 μg/kg and the highly contaminated sample had 162.40 μg/kg. The estimated average probable daily intake (APDI) of aflatoxin B1 (AFB1) from groundnuts consumption was 1.88 ng/kg body weight/day, while for maize, it ranged between 151.98-272.89 ng/kg body weight/day. The APDI for both groundnut and maize exceeded the provisional maximum tolerable daily intake (PMTDI) of AFB1 for adults (1 ng/kg body weight/day), bringing about health concerns for populations in Tanzania. Another alarming finding was that 75% of the farmers who provided samples for analysis were not aware of aflatoxins or the negative health impacts from consuming contaminated products. Results reported in this paper show that aflatoxin contaminated staple crops are widely distributed in Tanzania and that the risk of human exposure is high due to diet preferences. Awareness campaigns are required to inform and protect farmers and consumers.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 116
Author(s):  
Rafael Nguenha ◽  
Maral Seidi Damyeh ◽  
Hung T. Hong ◽  
Yasmina Sultanbawa

Mycotoxins are naturally occurring toxins produced by certain types of fungi thatcontaminate food and feed, posing serious health risks to human and livestock. Photosensitizationis a light-based technique, which has emerged as a novel and promising green technology to controlmicrobial growth in food and feed. This study aimed to evaluate the effect of solvent mediumincluding ethanol (EtOH), 50% (v/v) propylene glycol (PG), 20 % (v/v) tween 20 (TW-20), and 20 %(v/v) tween 80 (TW-80), on curcumin-mediated photosensitization to inactivate Aspergillus flavusspores in vitro and on the surface of yellow and white maize kernel and flour. Results showed areduction in the phototoxic activity of curcumin in TW-20 and TW-80. However, curcumin-basedphotosensitization using EtOH and PG as solvents led to a significant decrease in the colony formingability of A. flavus spores in vitro, up to 2.04 and 3.33 log colony-forming unit (CFU), respectively.Interestingly, fungal growth was delayed in photosensitized maize kernel and flour for 14 and 7days, respectively, which were stored at 25 °C. Consequently, no Aflatoxin B1 (AFB1) was detectedin maize kernels after 20 days of storage at 25 °C, whereas accumulation of the toxin was reducedby 91% in photosensitized flour. Thus, photosensitization showed to be a potential alternative toreduce A. flavus contamination on maize kernel and flour, giving rise to low concentrations of AFB1.This technique has the potential for use in feed applications resulting in the reduction of postharvestlosses in maize.


2009 ◽  
Vol 2009 ◽  
pp. 174-174
Author(s):  
M H Sakhavati ◽  
T Mohammadabadi ◽  
M Danesh Mesgaran ◽  
M R Nassiry ◽  
A Fani Maleki

Rumen fungi produce a wide range of polysaccharide degrading enzymes during growth on cell walls and can degrade 0.25 -0.65 of plant tissue dry weight in pure cultures (Orpin, 1983). It has been proposed that sodium hydroxide may break-down hemicellulose and cellulose and expose them to microbial attachment and improve digestibility (Gotoet al., 1993). The aim of the present study was to determinein vitrorumen fungal growth using a quantitative competitive PCR assay (QC-PCR) and dry matter (DM) and neutral detergent fibre (NDF) disappearance from a medium containing untreated (US) or sodium hydroxide treated wheat straw (TS).


2020 ◽  
Vol 16 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Pavan K. Mujawdiya ◽  
Suman Kapur

Background and Objective: Chronic diseases are associated with low-grade inflammation and oxidative damage. Traditional medicines have been used to manage these disorders due to their high polyphenol content and potent antioxidant activity. We evaluated the in-vitro anti-diabetic and antioxidant potential of extracts of several medicinal plants namely, Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula and Hippophae rhamnoides. Methods: Total polyphenol, flavonoid, and saponin contents were estimated by standard methods. Antioxidant activity was measured using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. The anti-diabetic potential was evaluated using in-vitro α-glucosidase inhibition assay. Results: Terminalia chebula was found to be the richest in both polyphenols (566.5 ± 21.9 μg Gallic acid equivalents/mg of dry weight) and flavonoids (190.67 ± 10.78 quercetin equivalents/mg of dry weight). Extract of Terminalia arjuna was the richest source of saponins (171.92 ± 12.48 μg saponin equivalents/mg of dry weight). All plant extracts showed potent anti-oxidant activity as reflected by their IC50 values in DPPH assay, with Albizia lebbeck (IC50 = 1.35 μg/ml) being the most potent. All plant extracts also showed potent anti-diabetic activity as inferred from their ability to inhibit α- glucosidase, the principal enzyme involved in the metabolism of dietary carbohydrates in the intestine. It was observed that all tested extracts were more potent (IC50 2.53 to 227 μg/ml) in comparison to the standard α-glucosidase inhibitor Acarbose (IC50=2.7 mg/ml). Conclusions: The plant extracts of Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula, and Hippophae rhamnoides possess potent antioxidant and α- glucosidase inhibitory potential and can aid in the management of postprandial hyperglycemia and oxidative damage.


2019 ◽  
Vol 4 (02) ◽  
pp. 199-211
Author(s):  
Ch. Inao Khaba ◽  
Bireswar Sinha ◽  
Marjit Chandam ◽  
P. D. Nath

A study was conducted in vitro condition to analyse the morphology and efficacy of bio agent, plant extract and some chemical against P. mangiferae which was collected from different districts of Manipur. The morphological characters under study consist of colony and conidial characteristics such as colour, shape, size and appendages. The cultural growth colour of P. mangiferae on PDA varied from concolour to versicolour fuliginous. The conidial shape varied from oval and spherical to elliptical with prominent appendages. The conidial length and widths were 22.9 and 5.7 μm respectively. The diseased sample which was collected from different district of Manipur consists of three septation and the number of conidial appendages was found 2-3 numbers. Among seven antagonists namely Penicillium citrinum, Trichoderma atroviride, T. ovalisporum, Hypocrea lixii, T. harzianum (69 and 131) and T. asperellum evaluatedin vitro, T. asperellum showed the best in inhibiting the growth of the fungus (85.8%). Among three plant extracts viz. garlic, neem and sweet flag evaluated in vitro, garlic extract (3.0%) showed the best result (100.0%). Among the seven chemicals viz. carbendazim, thiophenate methyl, mancozeb, imidacloprid, fipronil, profenophos and thiomethoxam evaluated in vitro, thiophenate methyl (0.05%) and carbendazim (0.05%) showed the best result with 100.0 percent inhibition in fungal growth.


Sign in / Sign up

Export Citation Format

Share Document