scholarly journals Emerging Roles of Non-Coding RNA in Neuronal Function and Dysfunction

2021 ◽  
Author(s):  
Steven G. Fagan ◽  
Shona Pfeiffer

Advancements in RNA sequencing technologies in recent years have contributed greatly to our understanding of the transcriptome and the now widely recognized multifaceted functions of RNA. The discovery and functional analysis of an increasing number of novel small non-coding RNAs (ncRNAs) has highlighted their importance as critical regulators of gene expression and brain function. In particular, two diverse classes of ncRNAs, microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNAs), are especially abundant in the nervous system and play roles in regulation of gene expression and protein translation, cellular stress responses and complex underlying pathophysiology of neurological diseases. This chapter will discuss the most recent findings highlighting the dysregulation, functions and regulatory roles of ncRNAs in the pathophysiological mechanisms of neurological disorders and their relevance as novel biomarkers of injury and therapeutic agents.

2021 ◽  
Vol 22 (21) ◽  
pp. 11870
Author(s):  
Biswanath Chatterjee ◽  
Che-Kun James Shen ◽  
Pritha Majumder

The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.


2020 ◽  
Vol 21 (8) ◽  
pp. 2742 ◽  
Author(s):  
Allan Böhm ◽  
Marianna Vachalcova ◽  
Peter Snopek ◽  
Ljuba Bacharova ◽  
Dominika Komarova ◽  
...  

Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules responsible for regulation of gene expression. They are involved in many pathophysiological processes of a wide spectrum of diseases. Recent studies showed their involvement in atrial fibrillation. They seem to become potential screening biomarkers for atrial fibrillation and even treatment targets for this arrhythmia. The aim of this review article was to summarize the latest knowledge about miRNA and their molecular relation to the pathophysiology, diagnosis and treatment of atrial fibrillation.


2019 ◽  
Vol 20 (22) ◽  
pp. 5755 ◽  
Author(s):  
Denise Drongitis ◽  
Francesco Aniello ◽  
Laura Fucci ◽  
Aldo Donizetti

The biology of transposable elements (TEs) is a fascinating and complex field of investigation. TEs represent a substantial fraction of many eukaryotic genomes and can influence many aspects of DNA function that range from the evolution of genetic information to duplication, stability, and gene expression. Their ability to move inside the genome has been largely recognized as a double-edged sword, as both useful and deleterious effects can result. A fundamental role has been played by the evolution of the molecular processes needed to properly control the expression of TEs. Today, we are far removed from the original reductive vision of TEs as “junk DNA”, and are more convinced that TEs represent an essential element in the regulation of gene expression. In this review, we summarize some of the more recent findings, mainly in the animal kingdom, concerning the active roles that TEs play at every level of gene expression regulation, including chromatin modification, splicing, and protein translation.


2010 ◽  
Vol 285 (14) ◽  
pp. 10690-10702 ◽  
Author(s):  
Anders Boysen ◽  
Jakob Møller-Jensen ◽  
Birgitte Kallipolitis ◽  
Poul Valentin-Hansen ◽  
Martin Overgaard

Author(s):  
Suresh Kumar ◽  
Trilochan Mohapatra

Gene regulation depends on dynamic and reversibly modifiable biological and chemical information in the epigenome/epitranscriptome. Accumulating evidence suggests that messenger RNAs (mRNAs) are generated in flashing bursts in the cells in a precisely regulated manner. However, the different aspects of the underlying mechanisms are not fully understood. Cellular RNAs are post-transcriptionally modified at the base level, which alters the metabolism of mRNA. The current understanding of epitranscriptome in the animal system is far ahead of that in plants. The accumulating evidence indicates that the epitranscriptomic changes play vital roles in developmental processes and stress responses. Besides being non-genetically encoded, they can be of reversible nature and involved in fine-tuning the expression of gene. However, different aspects of base modifications in mRNAs are far from adequate to assign the molecular basis/functions to the epitranscriptomic changes. Advances in the chemogenetic RNA-labeling and high-throughput next-generation sequencing techniques are enabling functional analysis of the epitranscriptomic modifications to reveal their roles in mRNA biology. Mapping of the common mRNA modifications, including N6-methyladenosine (m6A), and 5-methylcytidine (m5C), have enabled the identification of other types of modifications, such as N1-methyladenosine. Methylation of bases in a transcript dynamically regulates the processing, cellular export, translation, and stability of the mRNA; thereby influence the important biological and physiological processes. Here, we summarize the findings in the field of mRNA base modifications with special emphasis on m6A, m5C, and their roles in growth, development, and stress tolerance, which provide a new perspective for the regulation of gene expression through post-transcriptional modification. This review also addresses some of the scientific and technical issues in epitranscriptomic study, put forward the viewpoints to resolve the issues, and discusses the future perspectives of the research in this area.


2020 ◽  
Author(s):  
Nadav Eisner ◽  
Tzofia Maymon ◽  
Ester Cancho Sanchez ◽  
Dana Bar-Zvi ◽  
Sagie Brodsky ◽  
...  

AbstractThe transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3. To examine the possible biological role of S114 phosphorylation, we transformed abi4-1 mutant plants with ABI4pro::ABI4 constructs encoding wild type (114S), phosphorylation-null (S114A) or phosphomimetic (S114E) forms of ABI4. Phosphorylation of S114 is necessary for the response to ABA, glucose, salt stress, and lateral root development, where the abi4 phenotype could be complemented by expressing ABI4(114S) or ABI4(S114E) but not ABI4(S114A). Comparison of root transcriptomes in ABA-treated roots of abi4-1 mutant plants transformed with constructs encoding the different phosphorylation-forms of S114 of ABI4 revealed that 85% of the ABI4-regulated genes whose expression pattern could be restored by expressing ABI4(114S) are down-regulated by ABI4. Over half of the ABI4-modulated genes were independent of the phosphorylation state of ABI4; these are enriched for stress responses. Phosphorylation of S114 was required for regulation of 35% of repressed genes, but only 17% of induced genes. The genes whose repression requires the phosphorylation of S114 are mainly involved in embryo and seedling development, growth and differentiation, and regulation of gene expression.HighlightsTranscription factor ABI4 is a substrate of MAP kinases.MPK3 preferentially phosphorylates Serine 114 of ABI4.Phosphorylated Serine 114 of ABI4 is required for the complementation of abi4 mutants.Phosphorylated ABI4 acts primarily as a repressor.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qingshui Wang ◽  
Youyu Lin ◽  
Wenting Zhong ◽  
Yu Jiang ◽  
Yao Lin

The death associated protein kinases (DAPKs) are a family of calcium dependent serine/threonine kinases initially identified in the regulation of apoptosis. Previous studies showed that DAPK family members, including DAPK1, DAPK2 and DAPK3 play a crucial regulatory role in malignant tumor development, in terms of cell apoptosis, proliferation, invasion and metastasis. Accumulating evidence has demonstrated that non-coding RNAs, including microRNA (miRNA), long non-coding RNA (lncRNA) and circRNA, are involved in the regulation of gene expression and tumorigenesis. Recent studies indicated that non-coding RNAs participate in the regulation of DAPKs. In this review, we summarized the current knowledge of non-coding RNAs, as well as the potential miRNAs, lncRNAs and circRNAs, that are involved in the regulation of DAPKs.


Sign in / Sign up

Export Citation Format

Share Document