scholarly journals Structural characteristics and biotechnological applications of frutalin: lectin extracted from Artocarpus incisa

2018 ◽  
Vol 40 ◽  
pp. 46
Author(s):  
Bianca Régia Silva ◽  
Franscisco Léo Nascimento de Aguiar ◽  
José Roberto Viana Silva

Frutalin is a lectin extracted from the seeds of Artocarpus incisa, which belongs to the Moreacae family. This family consists of approximately 75 genera and 1,550 tropical species that commonly found in pan-tropical regions. Frutalin has attracted the attention of researchers due to its ability to recognize carbohydrates in cell membranes with modifications in the glycosylation pattern. Therefore, frutalin presents a striking potential to be used as biomarker of cancer cells. Despite having a great biotechnological potential, research involving this lectin is still limited. Thus, the aim of this review is to discuss the structural and functional characteristics of frutalin, properties, the mechanisms of action, as well as the biotechnological applications of this lectin.

2020 ◽  
Vol 06 ◽  
Author(s):  
Saheed Sabiu ◽  
Christiana Eleojo Aruwa ◽  
Viresh Mohanlall ◽  
Himansu Baijnath

Background: Momordica balsamina L. is a monoecious climbing vine and perennial herb native to the tropical regions of Asia, Arabia and the Caribbean, and with prominent presence in Nigeria, Botswana, Namibia, Swaziland and Southern African provinces. While evidence of its anecdotal usage as medicine exist, scientific reports complementing the claims are still emerging or at their infancy. Objective: This review appraised the morphology, therapeutic and biotechnological significance of M. balsamina. Method: Online resources such as Google Scholar, PubMed, ScienceDirect and MeSH were utilized for literature search and included relevant information from inception till May 2020 to streamline sought outcomes for in-depth discussion. Results: The data gathered and considered worthy of inclusion in this study revealed that M. balsamina is rich in phytonutrients of medicinal significance with cucurbitane-type triterpenoids, balsamin and momordins well characterized and fully elucidated. These compounds and other novel bioactive agents in M. balsamina have found remarkable pharmacological relevance and could further be harnessed for use against several debilitating human disorders. Conclusion: The potential applications of M. balsamina as nutraceutical and pharmaceutical agent should not be undermined. Also, with the inadequate toxicological data on this wild species, its consumption should be with caution and translational studies that could advance scientific knowledge and aid better understanding of both its pharmacokinetics and pharmacodynamics without sidelining its potent biotechnological applications are highly encouraged. It is hoped that this paper will provide baseline information that could serve as a guide and inspiration for further studies on the prospects of M. balsamina.


2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


Author(s):  
Zhihui Dou ◽  
Dapeng Zhao ◽  
Xiaohua Chen ◽  
Caipeng Xu ◽  
Xiaodong Jin ◽  
...  

AbstractBcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9234
Author(s):  
Xin Wen ◽  
Shui Liu ◽  
Jiyao Sheng ◽  
Manhua Cui

Cervical cancer (CC) remains a major disease burden on the female population worldwide. Chemotherapy with cisplatin (cis-diamminedichloroplatinum (II); CDDP) and related drugs are the main treatment option for CC; however, their efficacy is limited by the development of drug resistance. Noncoding RNAs (ncRNAs) have been found to play critical roles in numerous physiological and pathological cellular processes, including drug resistance of cancer cells. In this review, we describe some of the ncRNAs, including miRNAs, lncRNAs and circRNAs, that are involved in the sensitivity/resistance of CC to CDDP-based chemotherapy and discuss their mechanisms of action. We also describe some ncRNAs that could be therapeutic targets to improve the sensitivity of CC to CDDP-based chemotherapy.


2000 ◽  
Vol 47 (3) ◽  
pp. 751-762 ◽  
Author(s):  
R Sharma ◽  
S Awasthi ◽  
P Zimniak ◽  
Y C Awasthi

The last step of detoxification of both endogenous and environmental toxicants is typically a conjugation that produces a bulky hydrophilic molecule. The excretion of such conjugates out of cells is of sufficient biological importance to have led to the evolution of ATP-driven export pumps for this purpose. The substrate specificity of such transporters is broad, and in some cases it has been shown to include not only anionic conjugates but also neutral or weakly cationic drugs. In the present article, we review the molecular identity, functional and structural characteristics of these pumps, mainly on the example of human erythrocytes, and discuss their physiological role in detoxification and in the multidrug resistance phenotype of cancer cells.


2020 ◽  
Vol 63 (1) ◽  
pp. 1-10
Author(s):  
Mateusz OSZUST ◽  
◽  
Ziemowit OLSZANOWSKI ◽  
Marta PRZYMUSZAŁA ◽  
d Aleksandra JAGIEŁŁO ◽  
...  

Palm houses and other greenhouses, due to maintaining constant temperature and humidity, allow the cultivation in Europe of plants from different parts of the world, even from tropical regions. However, sometimes they are also a habitat for alien species of spiders, mites, insect, etc. These animals have been introduced accidentally with contaminated plants, seeds, seedlings, soil and thanks to stable conditions maintained in greenhouses, they may colonize these places. Example of arthropods, of which even tropical species occur in several greenhouses, are oribatid mites – minute saprophagous arachnids that mostly inhabit soil. In Europe they are represented by about 2,000 species, while worldwide – over 10,000 taxa were described. The aim of this research was to investigate the selected greenhouses for the biodiversity of oribatid mites and the presence of non-native species. In total, 49 taxa were recorded, including 23 alien species (for example, a Neotropical taxon Galumna hamifer, or Oriental Suctobelbella parallelodentata). These results confirm that greenhouses are the places of occurrence of many alien oribatid species. The obtained results may be used in future research on the biology of poorly known tropical mites.


Biotechnology ◽  
2019 ◽  
pp. 1086-1108
Author(s):  
Saritha Vara

The most abundant aromatic biopolymer on earth Lignin is extremely recalcitrant to degradation. It creates a barrier to solutions or enzymes by linking to both hemicellulose and cellulose preventing the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Global attention has been gained by fungi owing to the potential use of their versatile enzymes for agriculture, medicines, industries and bioremediation. The combination of extracellular ligninolytic enzymes, mediators, organic acids and accessory enzymes make some of the basidiomycete white-rot fungi to be able to degrade lignin efficiently. This review describes remediation of lignocelluloses by fungi, properties of fungi, their spatial distribution and the mechanisms of action which render them attractive candidates in biotechnological applications like biopulping, animal feed, genetic engineering and space exploration.


2017 ◽  
Vol 27 (3) ◽  
pp. 147-158 ◽  
Author(s):  
Liliana Godoy ◽  
Evelyn Silva-Moreno ◽  
Wladimir Mardones ◽  
Darwin Guzman ◽  
Francisco A. Cubillos ◽  
...  

Wine production is an important commercial issue for the liquor industry. The global production was estimated at 275.7 million hectoliters in 2015. The loss of wine production due to <i>Brettanomyces bruxellensis </i>contamination is currently a problem. This yeast causes a “horse sweat” flavor in wine, which is an undesired organoleptic attribute. To date, 6 <i>B. bruxellensis </i>annotated genome sequences are available (LAMAP2480, AWRI1499, AWRI1608, AWRI1613, ST05.12/22, and CBS2499), and whole genome comparisons between strains are limited. In this article, we reassembled and reannotated the genome of <i>B. bruxellensis</i> LAMAP2480, obtaining a 27-Mb assembly with 5.5 kb of N50. In addition, the genome of <i>B. bruxellensis</i> LAMAP2480 was analyzed in the context of spoilage yeast and potential as a biotechnological tool. In addition, we carried out an exploratory transcriptomic analysis of this strain grown in synthetic wine. Several genes related to stress tolerance, micronutrient acquisition, ethanol production, and lignocellulose assimilation were found. In conclusion, the analysis of the genome of <i>B. bruxellensis</i> LAMAP2480 reaffirms the biotechnological potential of this strain. This research represents an interesting platform for the study of the spoilage yeast <i>B. bruxellensis</i>.


IAWA Journal ◽  
2020 ◽  
Vol 41 (4) ◽  
pp. 463-477 ◽  
Author(s):  
Volker Haag ◽  
Valentina Theresia Zemke ◽  
Tim Lewandrowski ◽  
Johannes Zahnen ◽  
Peter Hirschberger ◽  
...  

Abstract About half the wood extracted worldwide from forests is used as fuelwood to produce energy, about 17 percent is converted to charcoal (FAO 2017) which represents one of the least controlled/monitored segments of the European timber market. Although charcoal has a significant share on the European market of wood-based products it is not yet covered by the European Timber Regulations (EUTR), (EU) No 995/2010. For this project, a total of 150 charcoal consignments from eleven countries (Germany, Poland, Switzerland, Spain, Italy, Norway, Denmark, Netherlands, Ukraine, Czech Republic, and Belgium) were examined and evaluated based on the 3D-reflected light microscopy technique. The high-resolution study indicates the proportion of different European timbers compared with that of timbers from subtropical and tropical regions. The share of subtropical and tropical species is surprisingly high with approximately 46% for material received from all countries studied, but far over 60% for Spain, Italy, Poland, and Belgium. The study shows that comparing the results for charcoal received from these countries there is an inversely proportional relation of certified products (FSC and PEFC) and products with timbers from subtropical or tropical origins. In the charcoal consignments from Switzerland, the share of timbers from subtropical or tropical origin is only 13.5%, whereas that of certified products is 60%. In material received from Spain, the proportion of timbers from subtropical or tropical regions is 67%, whereas that of certified products only 8%. A careful check of the declaration on the packaging, of the accompanying certificates, and the information on origin revealed alarming evidence: only 25% of the consignments examined provide information on the bags, e.g., with regard to the processed wood species; and well over half of such declarations were incorrect and/or incomplete. A trade flow analysis of EU member states was carried out to contribute to a better understanding of the relationships between international charcoal trade flows and the end products in European countries. This approach contributes to an essential understanding of charcoal transit in Europe and the results constitute a strong motive for the inclusion of charcoal in the respective annex to the EUTR.


Sign in / Sign up

Export Citation Format

Share Document