scholarly journals Assessment of bio-contaminants during COVID-19 outbreak from the indoor environment of Hail city, Kingdom of Saudi Arabia

2021 ◽  
Vol 17 (5) ◽  
pp. 541-449
Author(s):  
Mohammed Kuddus ◽  

Biocontaminants are minute particles derived from different biological materials. Indoor biocontaminants are associated with major public health problems. In Gulf countries, it is more precarious due to the harsh climatic conditions, including high ambient temperatures and relative humidity. In addition, due to COVID-19 pandemic, most of the time public is inside their home. Therefore, the aim of the study was to determine the load of biocontaminants in the indoor environment of Hail city. The results showed that most of the bacteria are gram-positive and higher in polymicrobial (87.1%) than monomicrobial (62.7%) association. There was no significant association with sample collection time and types of isolates. The most abundant microbes found in all samples were Staphylococcus aureus followed by Bacillus spp. Among Gram-negative bacterial isolates, E. coli was most common in tested indoor air samples. The study will be useful to find the biocontaminants associated with risk factors and their impact on human health in the indoor environment, especially during the COVID-19 pandemic. These results indicate the need to implement health care awareness programs in the region to improve indoor air quality.

2012 ◽  
Vol 256-259 ◽  
pp. 2648-2651
Author(s):  
Yu Ping Sun ◽  
Neng Zhu

In this study, the oxygen contents of the indoor air quality in different climatic conditions in a chamber were real-time monitored. At the same time, ten young volunteers sit in the three different environment conditions to fill subject feeling questionnaires. The climatic conditions referred to three groups of hot and humid environment (30°C, 35°C, 40°Cdry bulb temperature and 90% relative humidity). The results reveal the oxygen content of indoor air quality slightly decreased in different thermal environments, the values within normal variations. Questionnaire statistic results indicate that the temperature and humidity control in air conditioning significantly influence the human feelings. Thirsty, head heavy, tired, irritability, distraction, chest tightness and cold sweating are the main emerging symptoms in such indoor environments. Reasonable control of indoor temperature and humidity has vital importance to indoor environment quality.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2827
Author(s):  
Pavla Mocová ◽  
Jitka Mohelníková

Indoor climate comfort is important for school buildings. Nowadays, this is a topical problem, especially in renovated buildings. Poorly ventilated school classrooms create improper conditions for classrooms. A post-occupancy study was performed in a school building in temperate climatic conditions. The evaluation was based on the results of long-term monitoring of the natural ventilation strategy and measurements of the carbon dioxide concentration in the school classroom’s indoor environment. The monitoring was carried out in an old school building that was constructed in the 1970s and compared to testing carried out in the same school classroom after the building was renovated in 2016. Surprisingly, the renovated classroom had a significantly higher concentration of CO2. It was found that this was due to the regulation of the heating system and the new airtight windows. The occupants of the renovated classroom have a maintained thermal comfort, but natural ventilation is rather neglected. A controlled ventilation strategy and installation of heat recovery units are recommended to solve these problems with the classroom’s indoor environment. Microbiological testing of the surfaces in school classrooms also shows the importance of fresh air and solar radiation access for indoor comfort.


2018 ◽  
Vol 20 (5) ◽  
pp. 757-766 ◽  
Author(s):  
Nicholas J. Herkert ◽  
Keri C. Hornbuckle

Accurate and precise interpretation of concentrations from polyurethane passive samplers (PUF-PAS) is important as more studies show elevated concentrations of PCBs and other semivolatile air toxics in indoor air of schools and homes.


Author(s):  
Seyed Ali Keshavarz ◽  
Mazyar Salmanzadeh ◽  
Goodarz Ahmadi

Recently, attention has been given to indoor air quality due to its serious health concerns. Clearly the dispersion of pollutant is directly affected by the airflow patterns. The airflow in indoor environment is the results of a combination of several factors. In the present study, the effects of thermal plume and respiration on the indoor air quality in a ventilated cubicle were investigated using an unsteady computational modeling approach. The person-to-person contaminant transports in a ventilated room with mixing and displacement ventilation systems were studied. The effects of rotational motion of the heated manikins were also analyzed. Simulation results showed that in the cases which rotational motion was included, the human thermal plume and associated particle transport were significantly distorted. The distortion was more noticeable for the displacement ventilation system. Also it was found that the displacement ventilation system lowered the risk of person-to-person transmission in an office space in comparison with the mixing ventilation system. On the other hand the mixing system was shown to be more effective compared to the displacement ventilation in removing the particles and pollutant that entered the room through the inlet air diffuser.


2021 ◽  
Vol 15 (12) ◽  
pp. 3516-3518
Author(s):  
Nawaf Alotaibi

Background: The utilization of generic drugs in Saudi Arabia is under development. Many studies concerning generic drugs and their utilization by the consumers and promotion by health care professionals have been conducted in Saudi Arabia. Most of these studies revealed general unawareness of generic medicines among the Saudi people. Objective: The objective of this study was to evaluate the general perception regarding the generic medicines and branded medicines among the visitors of the Turaif general hospital. Methods: This cross‑sectional study was carried out from December 29, 2019, to January 23, 2020, at Turaif General Hospital, Turaif, Kingdom of Saudi Arabia using a questionnaire. The questionnaire was shared with the visitors (N = 527) of the hospital after their agreement, and the data were collected. The obtained data were statistically analyzed by Statistical Product and Service Solutions (SPSS) version 16. Results: The results of this study revealed that more than 50% of the participants were unaware about generic medicines and branded medicines; preferred imported generic medicines over local generics; agreed that the imported generic medicines are of high quality, more effective, and expensive as well. However, almost 50% of the participants were not sure about the quality, efficacy, safety, price, and side effects of the branded medicine. Conclusion: It has been concluded that there is a need to provide awareness programs about branded medicine, imported generic medicine, and locally manufactured generic medicines. Keywords: Branded drugs, Generic drugs, Awareness, Turaif, Saudi Arabia.


2008 ◽  
Vol 5 (3) ◽  
pp. 761-777 ◽  
Author(s):  
T. R. Duhl ◽  
D. Helmig ◽  
A. Guenther

Abstract. This literature review summarizes the environmental controls governing biogenic sesquiterpene (SQT) emissions and presents a compendium of numerous SQT-emitting plant species as well as the quantities and ratios of SQT species they have been observed to emit. The results of many enclosure-based studies indicate that temporal SQT emission variations appear to be dominated mainly by ambient temperatures although other factors contribute (e.g., seasonal variations). This implies that SQT emissions have increased significance at certain times of the year, especially in late spring to mid-summer. The strong temperature dependency of SQT emissions also creates the distinct possibility of increasing SQT emissions in a warmer climate. Disturbances to vegetation (from herbivores and possibly violent weather events) are clearly also important in controlling short-term SQT emissions bursts, though the relative contribution of disturbance-induced emissions is not known. Based on the biogenic SQT emissions studies reviewed here, SQT emission rates among numerous species have been observed to cover a wide range of values, and exhibit substantial variability between individuals and across species, as well as at different environmental and phenological states. These emission rates span several orders of magnitude (10s–1000s of ng gDW-1 h−1). Many of the higher rates were reported by early SQT studies, which may have included artificially-elevated SQT emission rates due to higher-than-ambient enclosure temperatures and disturbances to enclosed vegetation prior to and during sample collection. When predicting landscape-level SQT fluxes, modelers must consider the numerous sources of variability driving observed SQT emissions. Characterizations of landscape and global SQT fluxes are highly uncertain given differences and uncertainties in experimental protocols and measurements, the high variability in observed emission rates from different species, the selection of species that have been studied so far, and ambiguities regarding controls over emissions. This underscores the need for standardized experimental protocols, better characterization of disturbance-induced emissions, screening of dominant plant species, and the collection of multiple replicates from several individuals within a given species or genus as well as a better understanding of seasonal dependencies of SQT emissions in order to improve the representation of SQT emission rates.


2005 ◽  
Vol 68 (1) ◽  
pp. 26-33 ◽  
Author(s):  
K. STANFORD ◽  
S. J. BACH ◽  
T. H. MARX ◽  
S. JONES ◽  
J. R. HANSEN ◽  
...  

On-farm methods of monitoring Escherichia coli O157:H7 were assessed in 30 experimentally inoculated steers housed in four pens over a 12-week period and in 202,878 naturally colonized feedlot cattle housed in 1,160 pens on four commercial Alberta feedlots over a 1-year period. In the challenge study, yearling steers were experimentally inoculated with 1010 CFU of a four-strain mixture of nalidixic acid–resistant E. coli O157:H7. After inoculation, shedding of E. coli O157:H7 was monitored weekly by collecting rectal fecal samples (FEC), oral swabs (ORL), pooled fecal pats (PAT), manila ropes (ROP) orally accessed for 4 h, feed samples, water, and water bowl interface. Collection of FEC from all animals per pen provided superior isolation (P < 0.01) of E. coli O157:H7 compared with other methods, although labor and animal restraint requirements for fecal sample collection were high. When one sample was collected per pen of animals, E. coli O157:H7 was more likely to be detected from the ROP than from the FEC, PAT, or ORL (P < 0.001). In the commercial feedlot study, samples were limited to ROP and PAT, and E. coli O157:H7 was isolated in 18.8% of PAT and 6.8% of ROP samples. However, for animals that had been resident in the feedlot pen for at least 1 month, isolation of E. coli O157:H7 from ROP was not different from that from PAT (P = 0.35). Pens of animals on feed for <30 days were six times more likely to shed E. coli O157:H7 than were animals on feed for >30 days. However, change in diet did not affect shedding of the organism (P > 0.23) provided that animals had acclimated to the feedlot for 1 month or longer. Findings from this study indicate the importance of introduction of mitigation strategies early in the feeding period to reduce transference and the degree to which E. coli O157:H7 is shed into the environment.


2019 ◽  
Author(s):  
Miguel I. Uyaguari-Diaz ◽  
Matthew A. Croxen ◽  
Kirby Cronin ◽  
Zhiyao Luo ◽  
Judith Isaac-Renton ◽  
...  

AbstractTraditional methods for monitoring the microbiological quality of water focus on the detection of fecal indicator bacteria such as Escherichia coli, often tested as a weekly grab sample. To understand the stability of E.coli concentrations over time, we evaluated three approaches to measuring E. coli levels in water: microbial culture using Colilert, quantitative PCR for uidA and next-generation sequencing of the 16S rRNA gene. Two watersheds, one impacted by agricultural and the other by urban activities, were repeatedly sampled over a simultaneous ten-hour period during each of the four seasons. Based on 16S rRNA gene deep sequencing, each watershed showed different microbial community profiles. The bacterial microbiomes varied with season, but less so within each 10-hour sampling period. Enterobacteriaceae comprised only a small fraction (<1%) of the total community. The qPCR assay detected significantly higher quantities of E. coli compared to the Colilert assay and there was also variability in the Colilert measurements compared to Health Canada’s recommendations for recreational water quality. From the 16S data, other bacteria such as Prevotella and Bacteroides showed promise as alternative indicators of fecal contamination. A better understanding of temporal changes in watershed microbiomes will be important in assessing the utility of current biomarkers of fecal contamination, determining the best timing for sample collection, as well as searching for additional microbial indicators of the health of a watershed.


Author(s):  
Anurag D. Zaveri ◽  
Dilip N. Zaveri ◽  
Lakshmi Bhaskaran

Hospital Acquired Infections (HAIs) are a significant concern for healthcare setups, as it increases the overall cost of treatment, patients stay in hospitals, making them susceptible to secondary and tertiary infections and, sometimes, mortality1. To prevent or control HAIs, evaluating the organisms isolated from the critically maintained areas is considered of epitome importance and everlasting practice in the healthcare industry. Identifying such organisms and screening them for antibiotic resistance is mandatory, but it also helps professionals understand colonization trends. Sensitive areas of healthcare setups were screened monthly from years 2017 to 2020. A total of 4400 samples of hospital hygiene, e.g., intravenous drip stands, ventilator surface, anesthetist’s trolley, patient’s bed, instrument trolley, etcetera, were collected. Isolated organisms were cultured and screened using the CLSI technique. E. coli, Pseudomonas spp., and Klebsiella spp. were found in both previous to COVID current samples. Multidrug-resistant organisms were subjected to molecular characterization to detect the presence of carbapenem genes. Evaluation data of both pre-and during Coronavirus Disease or COVID-19 were compared. The prevalence of pathogenic (Klebsiella spp., E. coli, and Pseudomonas spp.) and non-pathogenic (Staphylococcus aureus and Bacillus spp.) strains in healthcare setups decreased drastically (Klebsiella spp. from 80% to 20%, E.coli from 90% to 10% and Pseudomonas spp. from 80% to 20%). It is possible only because of the awareness in non-specialists and healthcare workers due to the unforeseen critical situation proving to be a blessing for the future generation.


Sign in / Sign up

Export Citation Format

Share Document