scholarly journals Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

2015 ◽  
Vol 15 (6) ◽  
pp. 1489-1498 ◽  
Author(s):  
Di Han ◽  
Bulent Sarlioglu

This paper presents a closed loop control of an active-clamped full-wave quasi-resonant boost converter with zero-current-switching (ZCS) for power factor correction. Possibility to incorporate higherswitching frequency and has some potency to reduce switching losses. Power factor improvement and high efficiency is achieved with a constant output voltage and DC output voltage is regulated by using closed loop control .The concept of the proposed switchingscheme results lesser switching loss, higher efficiency, possibility to have higher switching frequency, and has potential to reduce converter's conducted EMI. This paper also presents voltage regulation using closed loop system and the simulation results are verified.


Author(s):  
А.М. САЖНЕВ ◽  
Л.Г. РОГУЛИНА

Разработана модель имитационных испытаний электронного устройства в современной программной среде на основе отечественных компонентов. Проведены имитационные испытания конвертора напряжения на 24 В с выходным током 1,4 А, частотой коммутации 20 кГц и выпрямительного устройства с выходным напряжением 48 В, током нагрузки 28 А. Получены частотные зависимости уровней кондуктивных помех и выполнена их оценка на соответствие нормам. A model of simulation tests of an electronic device in a modern software environment based on domestic components has been developed. Simulation tests of a 24 V voltage converter with an output current of 1.4 A, a switching frequency of 20 kHz, and a rectifier device with an output voltage of 48 V, a load current of 28 A were carried out. The frequency dependences of conductive interference levels were obtained and their compliance with the standards was evaluated.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3809
Author(s):  
Pang-Jung Liu ◽  
Mao-Hui Kuo

A ripple-based constant on-time (RBCOT) buck converter with a virtual inductor current ripple (VICR) control can relax the stability constraint of large equivalent series resistance (ESR) at an output capacitor, but output regulation accuracy deteriorates due to the issue with output DC offset. Thus, this paper proposes a wave tracking reference (WTR) control to improve converter stability with low ESR and concurrently eliminate output DC offset on the regulated output voltage. Moreover, an adaptive on-time (AOT) circuit is presented to suppress the switching frequency variation with load current changes in continuous conduction mode. A prototype chip was fabricated in 0.35 µm CMOS technology for validation. The measurement results demonstrate that the maximum output DC offset is 4.1 mV and the output voltage ripple is as small as 3 mV. Furthermore, the switching frequency variation with the AOT circuit is 11 kHz when load current changes from 50 mA to 500 mA, and the measured maximum efficiency is 90.9% for the maximum output power of 900 mW.


2022 ◽  
Author(s):  
Sunita Saini ◽  
Davinder Singh Saini

Abstract Fundamental charge vector method analysis is a single parameter optimization technique limited to conduction loss assuming all frequency-dependent switching (parasitic) loss negligible. This paper investigates a generalized structure to design DC-DC SC converters based on conduction and switching loss. A new technique is proposed to find the optimum value of switching frequency and switch size to calculate target load current and output voltage that maximize the efficiency. The analysis is done to identify switching frequency and switch size for two-phase 2:1 series-parallel SC converter for a target load current of 2.67mA implemented on a 22nm technology node. Results show that a minimum of 250MHz switching frequency is required for target efficiency more than 90% and the output voltage greater than 0.85V where the switch size of a unit cell corresponds to 10Ω on-resistance. MATLAB and PSpice simulation tools are used for results and validation.


2013 ◽  
Vol 31 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Jung Woong Park ◽  
Munkhsuld Gendensuren ◽  
Ho-Yong Choi ◽  
Nam-soo Kim

Purpose – The paper aims to design of dual-mode boost converter with integrated low-voltage control circuit is introduced in this paper. The paper aims to discuss these issues. Design/methodology/approach – The converter is operated either with LC filter or with charge pump circuit by the switch control. The control stage with error amplifier, comparator, and oscillator is designed with the supply voltage of 3.3 V and the operating frequency of 5.5 MHz. The compensator circuit exploits a pole compensation for a stable operation. Findings – The simulation test in 0.35 μm CMOS process shows that the charge pump regulator and DC-DC boost converter are accurately controlled with the variation of number of stages and duty ratio. The output-voltage is obtained to be 6-15 V within the ripple ratio of 5 percent. Maximum power consumption is about 0.65 W. Originality/value – This dual-mode is useful in the converter with a wide load-current variation. The advantage of the dual-mode converter is that it can be used in either high or low load current with a simple switch control. Furthermore, in charge pump regulator, there is no degradation of output voltage because of the feedback control circuit.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1623
Author(s):  
Bor-Ren Lin

In order to realize emission-free solutions and clean transportation alternatives, this paper presents a new DC converter with pulse frequency control for a battery charger in electric vehicles (EVs) or light electric vehicles (LEVs). The circuit configuration includes a resonant tank on the high-voltage side and two variable winding sets on the output side to achieve wide output voltage operation for a universal LEV battery charger. The input terminal of the presented converter is a from DC microgrid with voltage levels of 380, 760, or 1500 V for house, industry plant, or DC transportation vehicle demands, respectively. To reduce voltage stresses on active devices, a cascade circuit structure with less voltage rating on power semiconductors is used on the primary side. Two resonant capacitors were selected on the resonant tank, not only to achieve the two input voltage balance problem but also to realize the resonant operation to control load voltage. By using the variable switching frequency approach to regulate load voltage, active switches are turned on with soft switching operation to improve converter efficiency. In order to achieve wide output voltage capability for universal battery charger demands such as scooters, electric motorbikes, Li-ion e-trikes, golf carts, luxury golf cars, and quad applications, two variable winding sets were selected to have a wide voltage output (50~160 V). Finally, experiments with a 1 kW rated prototype were demonstrated to validate the performance and benefits of presented converter.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Jagabar Sathik ◽  
Dhafer J. Almakhles ◽  
N. Sandeep ◽  
Marif Daula Siddique

AbstractMultilevel inverters play an important role in extracting the power from renewable energy resources and delivering the output voltage with high quality to the load. This paper proposes a new single-stage switched capacitor nine-level inverter, which comprises an improved T-type inverter, auxiliary switch, and switched cell unit. The proposed topology effectively reduces the DC-link capacitor voltage and exhibits superior performance over recently switched-capacitor inverter topologies in terms of the number of power components and blocking voltage of the switches. A level-shifted multilevel pulse width modulation scheme with a modified triangular carrier wave is implemented to produce a high-quality stepped output voltage waveform with low switching frequency. The proposed nine-level inverter’s effectiveness, driven by the recommended modulation technique, is experimentally verified under varying load conditions. The power loss and efficiency for the proposed nine-level inverter are thoroughly discussed with different loads.


Sign in / Sign up

Export Citation Format

Share Document