scholarly journals SIR-2.1 integrates metabolic homeostasis with the reproductive neuromuscular excitability in early aging male Caenorhabditis elegans

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Xiaoyan Guo ◽  
L René García

The decline of aging C. elegans male’s mating behavior is correlated with the increased excitability of the cholinergic circuitry that executes copulation. In this study, we show that the mating circuits’ functional durability depends on the metabolic regulator SIR-2.1, a NAD+-dependent histone deacetylase. Aging sir-2.1(0) males display accelerated mating behavior decline due to premature hyperexcitability of cholinergic circuits used for intromission and ejaculation. In sir-2.1(0) males, the hypercontraction of the spicule-associated muscles pinch the vas deferens opening, thus blocking sperm release. The hyperexcitability is aggravated by reactive oxygen species (ROS). Our genetic, pharmacological, and behavioral analyses suggest that in sir-2.1(0) and older wild-type males, enhanced catabolic enzymes expression, coupled with the reduced expression of ROS-scavengers contribute to the behavioral decline. However, as a compensatory response to reduce altered catabolism/ROS production, anabolic enzymes expression levels are also increased, resulting in higher gluconeogenesis and lipid synthesis.

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Santiago Cuevas ◽  
Yu Yang ◽  
Laureano D Asico ◽  
John Jones ◽  
Ines Armando ◽  
...  

Increased renal generation of reactive oxygen species (ROS) is important in the pathogenesis of hypertension caused by absent or dysfunctional dopamine receptor subtype. Germline deletion of the dopamine 2 receptor in mice increases renal NADPH oxidase (NOX) activity and decreases expression paraoxonase 2 (PON2) and results in ROS-dependent hypertension. We determined if microRNA (miR) is involved in PON2-mediated regulation of NOX. Silencing PON2 in human renal proximal tubules cells decreased PON2 (-60±4%, n=3,*P<0.05) and increased NOX2 (110±15%, n=3,*P<0.05) and NOX4 (80±10%, n=3,*P<0.05) proteins, NOX activity (50±6%, n=3,*P<0.05), and ROS production (57±3%, n=4,*P<0.05). Inhibition of NOX activity by diphenyleneiodonium normalized the increase in ROS caused by PON2 silencing. Renal-selective silencing of Pon2 in mice by the renal subcapsular infusion of Pon2 siRNA decreased PON2 (~50%), and increased NOX2 (191±11%,n=3, P<0.05), NOX4 (60±4%,n=3, P<0.05), NOX activity (94±23%, n=3, P<0.05), and blood pressure (BP) (+41±6 mmHg, n=3, P<0.05). Pon2-/- mice also had higher BP than wild-type littermates (+15±2 mmHg,n=3/4,*P<0.05) but less than observed with renal-selective silencing indicating extrarenal compensation. Renal NOX2 (220±64%, n=3/4,*P<0.05) and NOX activity (195±77%, n=3,*P<0.05) were also increased in Pon2-/- mice. However, the renal expression of NOX4 was similar in Pon2-/- and wild-type littermates. The renal expressions of miR-23b, miR-34a and miR-155 (reported to regulate NOX expression) were also similar in Pon2-/- mice and wild-type littermates. However, renal miR-146a expression was decreased (-25±4%, n=3/4,*P<0.05) while miR-204 (150±12%, n=3/4,*P<0.05) and NFAT expressions (21±7%, n=3/4,*P<0.05) were increased in Pon2-/- mice. The increase in miR-204 could be a compensatory response because miR-204 has been shown to decrease NFAT expression. It is known that NFAT and NOX2 can positively regulate each other’s expression while miR-146a negatively regulates NOX4 expression and inflammation. We conclude that PON2 by increasing miR-146a and decreasing NFAT expression negatively regulates NOX activity and reduce ROS production that would contribute to the maintenance of normal BP.


2016 ◽  
Vol 113 (19) ◽  
pp. 5299-5304 ◽  
Author(s):  
Noriko Ueki ◽  
Takahiro Ide ◽  
Shota Mochiji ◽  
Yuki Kobayashi ◽  
Ryutaro Tokutsu ◽  
...  

The biflagellate green algaChlamydomonas reinhardtiiexhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant,lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Mostlts1-211cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype oflts1-211is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign.


Genetics ◽  
1983 ◽  
Vol 103 (1) ◽  
pp. 43-64
Author(s):  
Jonathan Hodgkin

ABSTRACT Mating behavior in adult male nematodes can be assayed by mating efficiency, i.e., the number of cross progeny sired by males under standard conditions. Mutant males from 220 strains, representing most of the known complementation groups of C. elegans, have been examined for mating efficiency and for anatomical abnormalities of the specialized male copulatory organs. These data extend the phenotypic description of these mutants and indicate what anatomical and behavioral components are necessary for the ability to mate successfully. Also, mutants with specific defects in the male were sought by establishing superficially wild-type hermaphrodite stocks after mutagenesis and testing the males segregated by these stocks for mating efficiency. Forty-nine of 1119 stocks yielded abnormal males. Seventeen were characterized in detail and found to be abnormal in sensory behavior (carrying mutations in the genes che-2 or che-3) or male genital anatomy (carrying mutations in one of the genes mab-1 to mab-10). Four of the mab (male abnormal) genes affect specific postembryonic cell lineages.


2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 150
Author(s):  
Kimberly J. Nelson ◽  
Terri Messier ◽  
Stephanie Milczarek ◽  
Alexis Saaman ◽  
Stacie Beuschel ◽  
...  

A central hallmark of tumorigenesis is metabolic alterations that increase mitochondrial reactive oxygen species (mROS). In response, cancer cells upregulate their antioxidant capacity and redox-responsive signaling pathways. A promising chemotherapeutic approach is to increase ROS to levels incompatible with tumor cell survival. Mitochondrial peroxiredoxin 3 (PRX3) plays a significant role in detoxifying hydrogen peroxide (H2O2). PRX3 is a molecular target of thiostrepton (TS), a natural product and FDA-approved antibiotic. TS inactivates PRX3 by covalently adducting its two catalytic cysteine residues and crosslinking the homodimer. Using cellular models of malignant mesothelioma, we show here that PRX3 expression and mROS levels in cells correlate with sensitivity to TS and that TS reacts selectively with PRX3 relative to other PRX isoforms. Using recombinant PRXs 1–5, we demonstrate that TS preferentially reacts with a reduced thiolate in the PRX3 dimer at mitochondrial pH. We also show that partially oxidized PRX3 fully dissociates to dimers, while partially oxidized PRX1 and PRX2 remain largely decameric. The ability of TS to react with engineered dimers of PRX1 and PRX2 at mitochondrial pH, but inefficiently with wild-type decameric protein at cytoplasmic pH, supports a novel mechanism of action and explains the specificity of TS for PRX3. Thus, the unique structure and propensity of PRX3 to form dimers contribute to its increased sensitivity to TS-mediated inactivation, making PRX3 a promising target for prooxidant cancer therapy.


Genetics ◽  
1972 ◽  
Vol 72 (3) ◽  
pp. 411-417
Author(s):  
C W H Partridge ◽  
Mary E Case ◽  
Norman H Giles

ABSTRACT A color test has been developed for the selection and identification of mutants in Neurospora crassa, constitutive for the three normally inducible enzymes which convert quinate to protocatechuate. By this means seven such mutants have been recovered after ultra violet irradiation of wild type and have been shown to be allelic (or very closely linked) to the qa-1C mutants previously obtained by other means. Thus, the regulation of the synthesis of these three catabolic enzymes is indicated to be under the control of a single gene, qa-1+.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Andrew Singson ◽  
Katherine L Hill ◽  
Steven W L’Hernault

Abstract Hermaphrodite self-fertilization is the primary mode of reproduction in the nematode Caenorhabditis elegans. However, when a hermaphrodite is crossed with a male, nearly all of the oocytes are fertilized by male-derived sperm. This sperm precedence during reproduction is due to the competitive superiority of male-derived sperm and results in a functional suppression of hermaphrodite self-fertility. In this study, mutant males that inseminate fertilization-defective sperm were used to reveal that sperm competition within a hermaphrodite does not require successful fertilization. However, sperm competition does require normal sperm motility. Additionally, sperm competition is not an absolute process because oocytes not fertilized by male-derived sperm can sometimes be fertilized by hermaphrodite-derived sperm. These results indicate that outcrossed progeny result from a wild-type cross because male-derived sperm are competitively superior and hermaphrodite-derived sperm become unavailable to oocytes. The sperm competition assays described in this study will be useful in further classifying the large number of currently identified mutations that alter sperm function and development in C. elegans.


2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Sign in / Sign up

Export Citation Format

Share Document