scholarly journals Speciation and the developmental alarm clock

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Asher D Cutter ◽  
Joanna D Bundus

New species arise as the genomes of populations diverge. The developmental ‘alarm clock’ of speciation sounds off when sufficient divergence in genetic control of development leads hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection between ‘evo-devo’ and speciation genetics to better link macroevolutionary pattern, microevolutionary process, and molecular mechanisms. Here, we explore speciation alongside development, emphasizing their mutual dependence on genetic network features, fitness landscapes, and developmental system drift. We assess models for how ontogenetic timing of reproductive isolation can be predictable. Experiments and theory within this synthetic perspective can help identify new rules of speciation as well as rules in the molecular evolution of development.

2020 ◽  
Author(s):  
Asher D. Cutter ◽  
Joanna D. Bundus

AbstractNew species arise as the genomes of populations diverge. The developmental ‘alarm clock’ of speciation sounds off when sufficient divergence in genetic control of development leads hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection between ‘evo-devo’ and speciation genetics to better link macroevolutionary pattern, microevolutionary process, and molecular mechanisms. Here we explore speciation alongside development, emphasizing their mutual dependence on genetic network features, fitness landscapes, and developmental system drift. We assess models for how ontogenetic timing of reproductive isolation can be predictable. Experiments and theory within this synthetic perspective can help identify new rules of speciation as well as rules in the molecular evolution of development.Impact StatementIntegrating speciation genetics with ontogeny can identify predictable rules in the molecular evolution of developmental pathways and in the accumulation of reproductive isolation as genomes diverge.


2019 ◽  
Vol 93 (2-3) ◽  
pp. 152-165
Author(s):  
Albert E. Ayoub ◽  
Martin H. Dominguez ◽  
Jaime Benoit ◽  
Juan Alberto Ortega ◽  
Nevena Radonjic ◽  
...  

The coordination of progenitor self-renewal, neuronal production, and migration is essential to the normal development and evolution of the cerebral cortex. Numerous studies have shown that the Notch, Wnt/beta-catenin, and Neurogenin pathways contribute separately to progenitor expansion, neurogenesis, and neuronal migration, but it is unknown how these signals are coordinated. In vitro studies suggested that the mastermind-like 1 (MAML1) gene, homologue of the Drosophila mastermind, plays a role in coordinating the aforementioned signaling pathways, yet its role during cortical development remains largely unknown. Here we show that ectopic expression of dominant-negative MAML (dnMAML) causes exuberant neuronal production in the mouse cortex without disrupting neuronal migration. Comparing the transcriptional consequences of dnMAML and Neurog2 ectopic expression revealed a complex genetic network controlling the balance of progenitor expansion versus neuronal production. Manipulation of MAML and Neurog2 in cultured human cerebral stem cells exposed interactions with the same set of signaling pathways. Thus, our data suggest that evolutionary changes that affect the timing, tempo, and density of successive neuronal layers of the small lissencephalic rodent and large convoluted primate cerebral cortex depend on similar molecular mechanisms that act from the earliest developmental stages.


2014 ◽  
Author(s):  
Julien Roux ◽  
Marta Rosikiewicz ◽  
Marc Robinson-Rechavi

Evolutionary developmental biology has grown historically from the capacity to relate patterns of evolution in anatomy to patterns of evolution of expression of specific genes, whether between very distantly related species, or very closely related species or populations. Scaling up such studies by taking advantage of modern transcriptomics brings promising improvements, allowing us to estimate the overall impact and molecular mechanisms of convergence, constraint or innovation in anatomy and development. But it also presents major challenges, including the computational definitions of anatomical homology and of organ function, the criteria for the comparison of developmental stages, the annotation of transcriptomics data to proper anatomical and developmental terms, and the statistical methods to compare transcriptomic data between species to highlight significant conservation or changes. In this article, we review these challenges, and the ongoing efforts to address them, which are emerging from bioinformatics work on ontologies, evolutionary statistics, and data curation, with a focus on their implementation in the context of the development of our database Bgee (http://bgee.org).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aisajan Mamat ◽  
Kuerban Tusong ◽  
Juan Xu ◽  
Peng Yan ◽  
Chuang Mei ◽  
...  

AbstractKorla pear (Pyrus sinkiangensis Yü) is a landrace selected from a hybrid pear species in the Xinjiang Autonomous Region in China. In recent years, pericarp roughening has been one of the major factors that adversely affects fruit quality. Compared with regular fruits, rough-skin fruits have a greater stone cell content. Stone cells compose sclerenchyma tissue that is formed by secondary thickening of parenchyma cell walls. In this work, we determined the main components of stone cells by isolating them from the pulp of rough-skin fruits at the ripening stage. Stone cell staining and apoptosis detection were then performed on fruit samples that were collected at three different developmental stages (20, 50 and 80 days after flowering (DAF)) representing the prime, late and stationary stages of stone cell differentiation, respectively. The same batches of samples were used for parallel transcriptomic and proteomic analysis to identify candidate genes and proteins that are related to SCW biogenesis in Korla pear fruits. The results showed that stone cells are mainly composed of cellulose (52%), hemicellulose (23%), lignin (20%) and a small amount of polysaccharides (3%). The periods of stone cell differentiation and cell apoptosis were synchronous and primarily occurred from 0 to 50 DAF. The stone cell components increased abundantly at 20 DAF but then decreased gradually. A total of 24,268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from the transcriptomic and proteomic data, respectively. We screened the DEGs and DAPs that were enriched in SCW-related pathways, including those associated with lignin biosynthesis (94 DEGs and 31 DAPs), cellulose and xylan biosynthesis (46 DEGs and 18 DAPs), S-adenosylmethionine (SAM) metabolic processes (10 DEGs and 3 DAPs), apoplastic ROS production (16 DEGs and 2 DAPs), and cell death (14 DEGs and 6 DAPs). Among the identified DEGs and DAPs, 63 significantly changed at both the transcript and protein levels during the experimental periods. In addition, the majority of these identified genes and proteins were expressed the most at the prime stage of stone cell differentiation, but their levels gradually decreased at the later stages.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 909
Author(s):  
Anyela Valentina Camargo Rodriguez

Senescence is the final stage of leaf development and is critical for plants’ fitness as nutrient relocation from leaves to reproductive organs takes place. Although senescence is key in nutrient relocation and yield determination in cereal grain production, there is limited understanding of the genetic and molecular mechanisms that control it in major staple crops such as wheat. Senescence is a highly orchestrated continuum of interacting pathways throughout the lifecycle of a plant. Levels of gene expression, morphogenesis, and phenotypic development all play key roles. Yet, most studies focus on a short window immediately after anthesis. This approach clearly leaves out key components controlling the activation, development, and modulation of the senescence pathway before anthesis, as well as during the later developmental stages, during which grain development continues. Here, a computational multiscale modelling approach integrates multi-omics developmental data to attempt to simulate senescence at the molecular and plant level. To recreate the senescence process in wheat, core principles were borrowed from Arabidopsis Thaliana, a more widely researched plant model. The resulted model describes temporal gene regulatory networks and their effect on plant morphology leading to senescence. Digital phenotypes generated from images using a phenomics platform were used to capture the dynamics of plant development. This work provides the basis for the application of computational modelling to advance understanding of the complex biological trait senescence. This supports the development of a predictive framework enabling its prediction in changing or extreme environmental conditions, with a view to targeted selection for optimal lifecycle duration for improving resilience to climate change.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 794
Author(s):  
Luca M. Scolari ◽  
Robert D. Hancock ◽  
Pete E. Hedley ◽  
Jenny Morris ◽  
Kay Smith ◽  
...  

‘Crumbly’ fruit is a developmental disorder in raspberry that results in malformed and unsaleable fruits. For the first time, we define two distinct crumbly phenotypes as part of this work. A consistent crumbly fruit phenotype affecting the majority of fruits every season, which we refer to as crumbly fruit disorder (CFD) and a second phenotype where symptoms vary across seasons as malformed fruit disorder (MFD). Here, segregation of crumbly fruit of the MFD phenotype was examined in a full-sib family and three QTL (Quantitative Trait Loci) were identified on a high density GbS (Genotype by Sequencing) linkage map. This included a new QTL and more accurate location of two previously identified QTLs. A microarray experiment using normal and crumbly fruit at three different developmental stages identified several genes that were differentially expressed between the crumbly and non-crumbly phenotypes within the three QTL. Analysis of gene function highlighted the importance of processes that compromise ovule fertilization as triggers of crumbly fruit. These candidate genes provided insights regarding the molecular mechanisms involved in the genetic control of crumbly fruit in red raspberry. This study will contribute to new breeding strategies and diagnostics through the selection of molecular markers associated with the crumbly trait.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 226
Author(s):  
Siying Fu ◽  
Yujie Duan ◽  
Siqi Wang ◽  
Yipeng Ren ◽  
Wenjun Bu

Riptortus pedestris (Hemiptera: Alydidae) is a major agricultural pest in East Asia that causes considerable economic losses to the soybean crop each year. However, the molecular mechanisms governing the growth and development of R. pedestris have not been fully elucidated. In this study, the Illumina HiSeq6000 platform was employed to perform de novo transcriptome assembly and determine the gene expression profiles of this species across all developmental stages, including eggs, first-, second-, third-, fourth-, and fifth-instar nymphs, and adults. In this study, a total of 60,058 unigenes were assembled from numerous raw reads, exhibiting an N50 length of 2126 bp and an average length of 1199 bp, and the unigenes were annotated and classified with various databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Furthermore, various numbers of differentially expressed genes (DEGs) were calculated through pairwise comparisons of all life stages, and some of these DEGs were associated with immunity, metabolism, and development by GO and KEGG enrichment. In addition, 35,158 simple sequence repeats (SSRs) and 715,604 potential single nucleotide polymorphisms (SNPs) were identified from the seven transcriptome libraries of R. pedestris. Finally, we identified and summarized ten wing formation-related signaling pathways, and the molecular properties and expression levels of five wing development-related genes were analyzed using quantitative real-time PCR for all developmental stages of R. pedestris. Taken together, the results of this study may establish a foundation for future research investigating developmental processes and wing formation in hemimetabolous insects and may provide valuable data for pest control efforts attempting to reduce the economic damage caused by this pest.


2021 ◽  
Vol 22 (13) ◽  
pp. 7029
Author(s):  
Cai-Yun Xiong ◽  
Qing-You Gong ◽  
Hu Pei ◽  
Chang-Jian Liao ◽  
Rui-Chun Yang ◽  
...  

In maize, the ear shank is a short branch that connects the ear to the stalk. The length of the ear shank mainly affects the transportation of photosynthetic products to the ear, and also influences the dehydration of the grain by adjusting the tightness of the husks. However, the molecular mechanisms of maize shank elongation have rarely been described. It has been reported that the maize ear shank length is a quantitative trait, but its genetic basis is still unclear. In this study, RNA-seq was performed to explore the transcriptional dynamics and determine the key genes involved in maize shank elongation at four different developmental stages. A total of 8145 differentially expressed genes (DEGs) were identified, including 729 transcription factors (TFs). Some important genes which participate in shank elongation were detected via function annotation and temporal expression pattern analyses, including genes related to signal transduction hormones (auxin, brassinosteroids, gibberellin, etc.), xyloglucan and xyloglucan xyloglucosyl transferase, and transcription factor families. The results provide insights into the genetic architecture of maize ear shanks and developing new varieties with ideal ear shank lengths, enabling adjustments for mechanized harvesting in the future.


Parasitology ◽  
2004 ◽  
Vol 130 (1) ◽  
pp. 31-40 ◽  
Author(s):  
D. J. MORRIS ◽  
R. S. TERRY ◽  
K. B. FERGUSON ◽  
J. E. SMITH ◽  
A. ADAMS

The development of a new species, Bacillidium vesiculoformis n. sp. (Microspora, Mrazekiidae), is described from the freshwater oligochaete Nais simplex (Oligochaeta, Naididae). Initial stages of parasite development consist of a monokaryotic merogony within a haemocyte of the intestinal blood sinus. The resulting hypertrophied haemocyte is attached to the chloragocytes of the sinus by fine cytoplasmic extensions with the sinus around the cell becoming greatly enlarged. The meronts within the haemocyte form diplokaryotic sporonts that undergo sporogenesis directly within the cytoplasm of the host cell. The infected cell becomes packed with spores and developmental stages, causing it dramatically to increase in size, eventually rupturing the oligochaete and cell. Sporogony appears to be disporoblastic. Released spores were observed to have an adhesive quality. Transmission studies conducted with mature spores failed to transmit the parasite horizontally although vertical transmission was observed. Phylogenetic analysis of the parasite demonstrated that B. vesiculoformis clustered with microsporidian parasites of bryozoa and two other microsporidians, Janacekia debaiseuxi and an unidentified Bacillidium sp.


Sign in / Sign up

Export Citation Format

Share Document