scholarly journals Vaccination induces rapid protection against bacterial pneumonia via training alveolar macrophage in mice

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hao Gu ◽  
Xi Zeng ◽  
Liusheng Peng ◽  
Chuanying Xiang ◽  
Yangyang Zhou ◽  
...  

Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.

2021 ◽  
Author(s):  
Gu Hao ◽  
Xi Zeng ◽  
Liusheng Peng ◽  
Chuanying Xiang ◽  
Yangyang Zhou ◽  
...  

Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here we demonstrated a single intranasal immunization of inactivated whole cell (IWC) of Acinetobacter baumannii elicits rapid protection against A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.


2012 ◽  
Vol 81 (3) ◽  
pp. 684-689 ◽  
Author(s):  
Jennifer H. Moffatt ◽  
Marina Harper ◽  
Ashley Mansell ◽  
Bethany Crane ◽  
Timothy C. Fitzsimons ◽  
...  

ABSTRACTInfections caused by multidrug-resistantAcinetobacter baumanniihave emerged as a serious global health problem. We have shown previously thatA. baumanniican become resistant to the last-line antibiotic colistin via the loss of lipopolysaccharide (LPS), including the lipid A anchor, from the outer membrane (J. H. Moffatt, M. Harper, P. Harrison, J. D. Hale, E. Vinogradov, T. Seemann, R. Henry, B. Crane, F. St. Michael, A. D. Cox, B. Adler, R. L. Nation, J. Li, and J. D. Boyce, Antimicrob. Agents Chemother.54:4971–4977, 2010). Here, we show how these LPS-deficient bacteria interact with components of the host innate immune system. LPS-deficientA. baumanniistimulated 2- to 4-fold lower levels of NF-κB activation and tumor necrosis factor alpha (TNF-α) secretion from immortalized murine macrophages, but it still elicited low levels of TNF-α secretion via a Toll-like receptor 2-dependent mechanism. Furthermore, we show that while LPS-deficientA. baumanniiwas not altered in its resistance to human serum, it showed increased susceptibility to the human antimicrobial peptide LL-37. Thus, LPS-deficient, colistin-resistantA. baumanniishows significantly altered activation of the host innate immune inflammatory response.


2008 ◽  
Vol 82 (16) ◽  
pp. 7790-7798 ◽  
Author(s):  
Marlynne Q. Nicol ◽  
Jean-Marie Mathys ◽  
Albertina Pereira ◽  
Kevin Ollington ◽  
Michael H. Ieong ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-positive persons are predisposed to pulmonary infections, even after receiving effective highly active antiretroviral therapy. The reasons for this are unclear but may involve changes in innate immune function. HIV type 1 infection of macrophages impairs effector functions, including cytokine production. We observed decreased constitutive tumor necrosis factor alpha (TNF-α) concentrations and increased soluble tumor necrosis factor receptor type II (sTNFRII) in bronchoalveolar lavage fluid samples from HIV-positive subjects compared to healthy controls. Moreover, net proinflammatory TNF-α activity, as measured by the TNF-α/sTNFRII ratio, decreased as HIV-related disease progressed, as manifested by decreasing CD4 cell count and increasing HIV RNA (viral load). Since TNF-α is an important component of the innate immune system and is produced upon activation of Toll-like receptor (TLR) pathways, we hypothesized that the mechanism associated with deficient TNF-α production in the lung involved altered TLR expression or a deficit in the TLR signaling cascade. We found decreased Toll-like receptor 1 (TLR1) and TLR4 surface expression in HIV-infected U1 monocytic cells compared to the uninfected parental U937 cell line and decreased TLR message in alveolar macrophages (AMs) from HIV-positive subjects. In addition, stimulation with TLR1/2 ligand (Pam3Cys) or TLR4 ligand (lipopolysaccharide) resulted in decreased intracellular phosphorylated extracellular signal-regulated kinase and subsequent decreased transcription and expression of TNF-α in U1 cells compared to U937 cells. AMs from HIV-positive subjects also showed decreased TNF-α production in response to these TLR2 and TLR4 ligands. We postulate that HIV infection alters expression of TLRs with subsequent changes in mitogen-activated protein kinase signaling and cytokine production that ultimately leads to deficiencies of innate immune responses that predispose HIV-positive subjects to infection.


2006 ◽  
Vol 74 (8) ◽  
pp. 4430-4438 ◽  
Author(s):  
Kaushik Chakrabarty ◽  
Wenxin Wu ◽  
J. Leland Booth ◽  
Elizabeth S. Duggan ◽  
K. Mark Coggeshall ◽  
...  

ABSTRACT Contact with the human alveolar macrophage plays a key role in the innate immune response to Bacillus anthracis spores. Because there is a significant delay between the initial contact of the spore with the host and clinical evidence of disease, there appears to be temporary containment of the pathogen by the innate immune system. Therefore, the early macrophage response to Bacillus anthracis exposure is important in understanding the pathogenesis of this disease. In this paper, we studied the initial events after exposure to spores, beginning with the rapid internalization of spores by the macrophages. Spore exposure rapidly activated the mitogen-activated protein kinase signaling pathways extracellular signal-regulated kinase, c-Jun-NH2-terminal kinase, and p38. This was followed by the transcriptional activation of cytokine and primarily monocyte chemokine genes as determined by RNase protection assays. Transcriptional induction is reflected at the translational level, as interleukin-1α (IL-1α), IL-1β, IL-6, and tumor necrosis factor alpha (TNF-α) cytokine protein levels were markedly elevated as determined by enzyme-linked immunosorbent assay. Induction of IL-6 and TNF-α, and, to a lesser extent, IL-1α and IL-1β, was partially inhibited by the blockade of individual mitogen-activated protein kinases, while the complete inhibition of cytokine induction was achieved when multiple signaling pathway inhibitors were used. Taken together, these data clearly show activation of the innate immune system in human alveolar macrophages by Bacillus anthracis spores. The data also show that multiple signaling pathways are involved in this cytokine response. This report is the first comprehensive examination of this process in primary human alveolar macrophages.


2009 ◽  
Vol 106 (6) ◽  
pp. 1935-1942 ◽  
Author(s):  
Farnaz P. Baqai ◽  
Daila S. Gridley ◽  
James M. Slater ◽  
Xian Luo-Owen ◽  
Louis S. Stodieck ◽  
...  

Spaceflight conditions have a significant impact on a number of physiological functions due to psychological stress, radiation, and reduced gravity. To explore the effect of the flight environment on immunity, C57BL/6NTac mice were flown on a 13-day space shuttle mission (STS-118). In response to flight, animals had a reduction in liver, spleen, and thymus masses compared with ground (GRD) controls ( P < 0.005). Splenic lymphocyte, monocyte/macrophage, and granulocyte counts were significantly reduced in the flight (FLT) mice ( P < 0.05). Although spontaneous blastogenesis of splenocytes in FLT mice was increased, response to lipopolysaccharide (LPS), a B-cell mitogen derived from Escherichia coli, was decreased compared with GRD mice ( P < 0.05). Secretion of IL-6 and IL-10, but not TNF-α, by LPS-stimulated splenocytes was increased in FLT mice ( P < 0.05). Finally, many of the genes responsible for scavenging reactive oxygen species were upregulated after flight. These data indicate that exposure to the spaceflight environment can increase anti-inflammatory mechanisms and change the ex vivo response to LPS, a bacterial product associated with septic shock and a prominent Th1 response.


2020 ◽  
Vol 16 (4) ◽  
pp. 293-301
Author(s):  
A. Kaki ◽  
M. Nikbakht ◽  
A.H. Habibi ◽  
H.F. Moghadam

Neuronal inflammation is one of the pathophysiological causes of diabetes neuropathic pain. The purpose of this research was to determine the effect of aerobic exercise on innate immune responses and inflammatory mediators in the spinal dorsal horn in rats with diabetic neuropathic pain. 40 eight-week-old male Wistar rats (weight range 220±10.2 g) were randomly divided into four groups of (1) sedentary diabetic neuropathy (SDN), (2) training diabetic neuropathy (TDN), (3) training control (TC), and (4) sedentary control (SC). Diabetes was induced by injection of streptozocin (50 mg/kg). Following confirmation of behavioural tests for diabetes neuropathy, the training groups performed 6 weeks of moderate-intensity aerobic exercise on the treadmill. The expression of Toll like receptor (TLR)4, TLR2, tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 genes in L4-L6 spinal cord sensory neurons was measured by Real Time PCR. Two-way ANOVA and Bonferroni’s post hoc tests were used for statistical analysis. After performing aerobic exercise protocol, the TDN compared to the SDN showed a significant decrease in the mean score of pain in the formalin test and a significant increase in the latency in Tail-Flick test was observed. The expression of TLR4, TLR2, TNF-α and IL-1β genes was significantly higher in the SDN than in the SC group (P<0.05). The expression of the above genes in the TDN was significantly lower than the SDN group (P<0.05). Also, the expression level of IL-10 gene was significantly higher in the TDN than the SDN group (P<0.05). Aerobic exercise improved sensitivity of nociceptors to pain-inducing agents in diabetic neuropathy due to inhibition of inflammatory receptors and increased levels of anti-inflammatory agents in the nervous system. Thus, aerobic exercise should be used as a non-pharmacological intervention for diabetic patients to reduce neuropathic pain.


2002 ◽  
Vol 76 (9) ◽  
pp. 4580-4590 ◽  
Author(s):  
Anne-Kathrin Zaiss ◽  
Qiang Liu ◽  
Gloria P. Bowen ◽  
Norman C. W. Wong ◽  
Jeffrey S. Bartlett ◽  
...  

ABSTRACT Adenovirus vectors induce acute inflammation of infected tissues due to activation of the innate immune system and expression of numerous chemokines and cytokines in transduced target cells. In contrast, adeno-associated virus (AAV) vectors are not associated with significant inflammation experimentally or clinically. We tested the ability of AAV vectors to induce the expression of chemokines in vitro and to activate the innate immune system in vivo. In human HeLa cells and murine renal epithelium-derived cells (REC cells) the adenovirus vector AdlacZ induced the expression of multiple inflammatory chemokines including RANTES, interferon-inducible protein 10 (IP-10), interleukin-8 (IL-8), MIP-1β, and MIP-2 in a dose-dependent manner. The use of AAVlacZ did not induce the expression of these chemokines above baseline levels despite 40-fold-greater titers than AdlacZ and greater amounts of intracellular AAVlacZ genomes according to Southern and slot blot analysis. This finding confirmed that the lack of AAVlacZ induction of chemokine was not due to reduced transduction. In DBA/2 mice, the intravenous administration of 2.5 × 1011 particles of AAVlacZ resulted in the rapid induction of liver tumor necrosis factor alpha (TNF-α), RANTES, IP-10, MIP-1β, MCP-1, and MIP-2 mRNAs. However, 6 h following injection, chemokine mRNA levels returned to baseline. As expected, administration of 10-fold less AdlacZ caused an induction of liver TNF-α and chemokine mRNAs that persisted for more than 24 h posttransduction. Whereas intravenous administration of 2.5 × 1011 particles of AAVlacZ triggered a transient infiltration of neutrophils and CD11b+ cells into liver, this response stood in contrast to widespread inflammation and toxicity induced by AdlacZ. Kupffer cell depletion abolished AAVlacZ but not AdlacZ-induced chemokine expression and neutrophil infiltration. In summary, these results show that AAV vectors activate the innate immune system to a lesser extent than do adenovirus vectors and offer a possible explanation for the reduced inflammatory properties of AAV compared to adenovirus vectors.


2007 ◽  
Vol 292 (3) ◽  
pp. E740-E747 ◽  
Author(s):  
S. J. Creely ◽  
P. G. McTernan ◽  
C. M. Kusminski ◽  
ff. M. Fisher ◽  
N. F. Da Silva ◽  
...  

Type 2 diabetes (T2DM) is associated with chronic low-grade inflammation. Adipose tissue (AT) may represent an important site of inflammation. 3T3-L1 studies have demonstrated that lipopolysaccharide (LPS) activates toll-like receptors (TLRs) to cause inflammation. For this study, we 1) examined activation of TLRs and adipocytokines by LPS in human abdominal subcutaneous (AbdSc) adipocytes, 2) examined blockade of NF-κB in human AbdSc adipocytes, 3) examined the innate immune pathway in AbdSc AT from lean, obese, and T2DM subjects, and 4) examined the association of circulating LPS in T2DM subjects. The findings showed that LPS increased TLR-2 protein expression twofold ( P < 0.05). Treatment of AbdSc adipocytes with LPS caused a significant increase in TNF-α and IL-6 secretion (IL-6, Control: 2.7 ± 0.5 vs. LPS: 4.8 ± 0.3 ng/ml; P < 0.001; TNF-α, Control: 1.0 ± 0.83 vs. LPS: 32.8 ± 6.23 pg/ml; P < 0.001). NF-κB inhibitor reduced IL-6 in AbdSc adipocytes (Control: 2.7 ± 0.5 vs. NF-κB inhibitor: 2.1 ± 0.4 ng/ml; P < 0.001). AbdSc AT protein expression for TLR-2, MyD88, TRAF6, and NF-κB was increased in T2DM patients ( P < 0.05), and TLR-2, TRAF-6, and NF-κB were increased in LPS-treated adipocytes ( P < 0.05). Circulating LPS was 76% higher in T2DM subjects compared with matched controls. LPS correlated with insulin in controls ( r = 0.678, P < 0.0001). Rosiglitazone (RSG) significantly reduced both fasting serum insulin levels (reduced by 51%, P = 0.0395) and serum LPS (reduced by 35%, P = 0.0139) in a subgroup of previously untreated T2DM patients. In summary, our results suggest that T2DM is associated with increased endotoxemia, with AT able to initiate an innate immune response. Thus, increased adiposity may increase proinflammatory cytokines and therefore contribute to the pathogenic risk of T2DM.


Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5177-5188 ◽  
Author(s):  
Enrique Sanchez-Lemus ◽  
Yuki Murakami ◽  
Ignacio M. Larrayoz-Roldan ◽  
Armen J. Moughamian ◽  
Jaroslav Pavel ◽  
...  

Peripheral administration of bacterial endotoxin [lipopolysaccharide (LPS)] to rodents produces an innate immune response and hypothalamic-pituitary-adrenal axis stimulation. Renin-angiotensin-aldosterone system inhibition by angiotensin II AT1 receptor blockade has antiinflammatory effects in the vasculature. We studied whether angiotensin II receptor blockers (ARBs) prevent the LPS response. We focused on the adrenal gland, one organ responsive to LPS and expressing a local renin-angiotensin-aldosterone system. LPS (50 μg/kg, ip) produced a generalized inflammatory response with increased release of TNF-α and IL-6 to the circulation, enhanced adrenal aldosterone synthesis and release, and enhanced adrenal cyclooxygenase-2, IL-6, and TNF-α gene expression. ACTH and corticosterone release were also increased by LPS. Pretreatment with the ARB candesartan (1 mg/kg·d, sc for 3 d before the LPS administration) decreased LPS-induced cytokine release to the circulation, adrenal aldosterone synthesis and release, and cyclooxygenase-2 and IL-6 gene expression. Candesartan did not prevent the LPS-induced ACTH and corticosterone release. Our results suggest that AT1 receptors are essential for the development of the full innate immune and stress responses to bacterial endotoxin. The ARB decreased the general peripheral inflammatory response to LPS, partially decreased the inflammatory response in the adrenal gland, prevented the release of the pro-inflammatory hormone aldosterone, and protected the antiinflammatory effects of glucocorticoid release. An unrestricted innate immune response to the bacterial endotoxin may have deleterious effects for the organism and may lead to development of chronic inflammatory disease. We postulate that the ARBs may have therapeutic effects on inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document