Effects of Strength Additives on the Properties of High Bulk Pulp Mold

Author(s):  
Yong Joo Sung ◽  
Yu-jin Lee ◽  
Hye-bin Kwon ◽  
Ji Young Lee
Keyword(s):  
2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Chunyu Ding ◽  
Zhiyong Xiao ◽  
Yan Su

AbstractIn the radargram obtained by the high-frequency lunar penetrating radar onboard the Chang’E-3 mission, we notice a potential subsurface cavity that has a smaller permittivity compared to the surrounding materials. The two-way travel time between the top and bottom boundaries of the potential cavity is ~ 21 ns, and the entire zone is located within the continuous ejecta deposits of the Ziwei crater, which generally have similar physical properties to typical lunar regolith. We carried out numerical simulations for electromagnetic wave propagation to investigate the nature of this low-permittivity zone. Assuming different shapes for this zone, a comprehensive comparison between our model results and the observed radargram suggests that the roof of this zone is convex and slightly inclined to the south. Modeling subsurface materials with different relative permittivities suggests that the low-permittivity zone is most likely formed due to a subsurface cavity. The maximum vertical dimension of this potential cavity is ~ 3.1 m. While the continuous ejecta deposits of Ziwei crater are largely composed of pre-impact regolith, competent mare basalts were also excavated, which is evident by the abundant meter-scale boulders on the wall and rim of Ziwei crater. We infer that the subsurface cavity is supported by excavated large boulders, which were stacked during the energetic emplacement of the continuous ejecta deposits. However, the exact geometry of this cavity (e.g., the width) cannot be constrained using the single two-dimensional radar profile. This discovery indicates that large voids formed during the emplacement of impact ejecta should be abundant on the Moon, which contributes to the high bulk porosity of the lunar shallow crust, as discovered by the GRAIL mission. Our results further suggest that ground penetrating radar is capable of detecting and deciphering subsurface cavities such as lava tubes, which can be applied in future lunar and deep space explorations.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 570
Author(s):  
Olga Sánchez ◽  
Manuel Hernández-Vélez

ZnOTe compounds were grown by DC magnetron cosputtering from pure Tellurium (Te) and Zinc (Zn) cathodes in O2/Ar atmosphere. The applied power on the Zn target was constant equal to 100 W, while the one applied on the Te target took two values, i.e., 5 W and 10 W. Thus, two sample series were obtained in which the variable parameter was the distance from the Te targets to the substrate. Sample compositions were determined by Rutherford Backscattering Spectroscopy (RBS) experiments. Structural analysis was done using X-Ray diffraction (XRD) spectrometry and the growth of the hexagonal w-ZnO phase was identified in the XRD spectra. RBS results showed high bulk homogeneity of the samples forming ZnOTe alloys, with variable Te molar fraction (MF) ranging from 0.48–0.6% and from 1.9–3.1% for the sample series obtained at 5 W and 10 W, respectively. The results reflect great differences between the two sample series, particularly from the structural and optical point of view. These experiments point to the possibility of Te doping ZnO with the permanence of intrinsic defects, as well as the possibility of the formation of other Te solid phases when its content increases. The results and appreciable variations in the band gap transitions were detected from Photoluminescence (PL) measurements.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan-Erik Berg ◽  
Börje Hellstadius ◽  
Mikael Lundfors ◽  
Per Engstrand

AbstractChemithermomechanical pulp (CTMP) is often used in central layers of multiply paperboards due to its high bulk and strength. Such a CTMP should consist of well-separated undamaged fibres with sufficient bonding capacity. The basic objective of this work is to optimize process conditions in low-consistency (LC) refining, i. e. to select or ultimately develop new optimal LC refiner filling patterns, in order to produce fibrillar fines and improve the separation of fibres from each other while preserving the natural fibre morphology as much as possible. Furthermore, the aim is to evaluate if this type of work can be done at laboratory-scale or if it is necessary to run trials in pilot- or mill-scale in order to get relevant answers. First stage CTMP made from Norway spruce (Picea abies) was LC refined in mill-, pilot- and laboratory-scale trials and with different filling patterns. The results show that an LR1 laboratory refiner can favourably be used instead of larger refiners in order to characterize CTMP with regard to tensile index and z-strength versus bulk. A fine filling pattern resulted in CTMP with higher tensile index, z-strength and energy efficiency at maintained bulk compared to a standard filling pattern.


2010 ◽  
Vol 65 (8) ◽  
pp. 1038-1044 ◽  
Author(s):  
Kazumichi Yanagisawa ◽  
Jae-Hyen Kim ◽  
Chisato Sakata ◽  
Ayumu Onda ◽  
Eri Sasabe ◽  
...  

Calcium-deficient hydroxyapatite (CDHA) prepared by the coprecipitation method was solidified by the hydrothermal hot-pressing technique, and compacts of CDHA with high bulk density beyond 80% were obtained at 200 ℃. Each reaction parameter, viz. reaction temperature, pressure, and time, was systematically changed from the standard conditions to investigate its effects on density, Vickers hardness, and Ca/P ratio of the compacts obtained. The reaction temperature and pressure had a large effect on densification, but not the reaction time because the densification proceeds in a short time. The densification by hydrothermal hot-pressing involved dissolution and precipitation of the starting CDHA powder, so that the Ca/P ratio changed from 1.52 of the starting powders to 1.61 of the compact obtained by hydrothermal hot-pressing at 200 ℃ and 35 MPa for 24 h with the addition of 10 wt.-% water


Livestock ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 268-273
Author(s):  
Al Manning

Selective treatment of clinical mastitis cases based on the results of on-farm culture (OFC) has been suggested by several international experts. It is based on the theory that mastitis cases caused by Gram-negative species has high resolution rates, and those that do not resolve respond poorly to therapy. Several peer-reviewed studies have evaluated the accuracy of different OFC test kits, which are between 60–85% accurate at identifying Gram-positive pathogens. Implementation studies consistently show a reduction in antimicrobial use, although further research across larger populations is needed to assess the impact on mastitis cure. Any OFC protocol should be regularly reviewed with the herd veterinarian. Herds with a high bulk cell count, a high prevalence of Gram-positive pathogens (e.g. Streptococcus uberis), or with a high prevalence of Klebsiella spp. should carefully consider the impact of deferred or withholding treatment on mastitis cure.


Author(s):  
Tomasz Poreba ◽  
Gaston Garbarino ◽  
Davide Comboni ◽  
Mohamed Mezouar

Dicaesium octaiodide is composed of layers of zigzag polyiodide units (I8 2−) intercalated with caesium cations. Each I8 2− unit is built of two triiodides bridged with one diiodine molecules. This system was subjected to compression up to 5.9 GPa under hydrostatic conditions. Pressure alters the supramolecular architecture around I8 2−, leading to bending of the triiodide units away from their energetically preferred geometry (D ∞h). Short I2...I3 − contacts compress significantly, reaching lengths typical for the covalently bonded polyiodides. Unlike in reported structures at ambient conditions, pressure-induced catenation proceeds without symmetrization of the polyiodides, pointing to a different electron-transfer mechanism. The structure is shown to be half as compressible [B0 = 12.9 (4) GPa] than the similar CsI3 structure. The high bulk modulus is associated with higher I—I connectivity and a more compact cationic net, than in CsI3. The small discontinuity in the compressibility trend around 3 GPa suggests formation of more covalent I—I bonds. The potential sources of this discontinuity and its implication on the electronic properties of Cs2I8 are discussed.


2000 ◽  
Vol 660 ◽  
Author(s):  
Xiang Zhou ◽  
Andreas Nollau ◽  
Jan Blochwitz ◽  
Martin Pfeiffer ◽  
Torsten Fritz ◽  
...  

ABSTRACTWe investigate the electrical properties and the OLED application of controlledly doped amorphous hole transporters. Thin films of starburst amine, 4,4',4“-tris(N,N-diphenyl- amino) triphenylamine (TDATA), doped by a fully fluorinated form of tetracyano- quinodimethane (F4-TCNQ), are characterized in situ by temperature dependent conductivity and Seebeck measurements. The conductivity and hole concentration increase with dopant concentration and are many orders of magnitude higher than those of undoped material. OLED devices with the layer sequence ITO/TDATA(200 nm)/Alq3(65 nm)/LiF(1 nm)/Al were fabricated. The use of p-doped TDATA thin films with high bulk conductivity and hole concentration reduces the resistance of the devices and leads to a thinner space charge layer which facilitates injection of holes from the ITO anode.


2003 ◽  
Vol 76 (1) ◽  
pp. 89-100 ◽  
Author(s):  
E.C. Whittemore ◽  
G. C. Emmans ◽  
I. Kyriazakis

AbstractData from pigs between 12 and 120 kg live weight were used to develop a relationship between the capacity for food bulk and live weight. High bulk foods, intended to limit growth, were offered for 21 days to pigs of 12, 36 (600 g sugar-beet pulp per kg (SBP60)) and 108 (800 g sugar-beet pulp per kg (SBP80)) kg live weight. Control pigs were given a low bulk food C at all weights. After 21 days the pigs were slaughtered and measurements made on the gastro-intestinal tract (GIT). In two additional treatment groups SBP60was offered from a weight of either 36 kg or 72 kg before SBP80was offered at 108 kg. Daily live-weight gain, after allowing for the effects of a change of gut fill, was less at all weights on the high bulk foods than on C. At all weights the high bulk foods caused a significant increase in the weights of the stomach, large intestine, caecum and gut fill. Effects on the weight of the small intestine were small. Previous nutrition had no significant effect on the adapted performance, or on the size of the GIT, of pigs given SBP80at 108 kg but pre-feeding SBP60significantly increased initial consumption of SBP80. Constrained intake was not directly proportional to live weight beyond 40 kg. The absolute capacity for bulk (Cap, kg water-holding capacity per day) was related to live weight (W, kg) by the quadratic function Cap = (0·192.W) - (0·000299.W2). The value of Cap is predicted to reach a maximum when W = 321 kg. The combined weights of the large intestine and caecum (WLIC) changed with W in ways that were similar to the way in which Cap changed. In addition the ratio of Cap to WLIC was close to constant. The combined weight of the large intestine and the caecum may determine the capacity for food bulk in pigs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoya Ueda ◽  
Haruna Asano ◽  
Kyoko Tsuge ◽  
Kanako Seo ◽  
Motoki Sudo ◽  
...  

AbstractGait maturation in infants develops gradually through several phases. However, external factors such as childrearing practices, especially the wearing of diapers, may affect an infant’s motor development. This study investigated the influence of different bulk stresses on the gait of toddlers wearing a disposable diaper. Twenty-six healthy toddlers (age: 19.2 ± 0.9 months) participated in this study. We measured the joint kinematics (pelvis angle and hip-joint angle) and spatiotemporal parameters (step length and step width) of the toddlers’ gait under four dress conditions (wearing Type A_WET, Type A_DRY, and Type B_WET diapers and naked). Type B_WET had a higher bulk stress than Type A_WET, and Type A_DRY had lower stress than Type A _ WET. Our results indicate that the walk of toddlers when wearing a diaper differs from that when naked. This difference is due to the effect of the bulk of the diaper on the lower limb. A high bulk stress has a greater influence than that of a low bulk stress on joint dynamics and step width. Therefore, our findings suggest that wearing diapers with high bulk stress may inhibit the natural gait patterns of toddlers.


Sign in / Sign up

Export Citation Format

Share Document