scholarly journals Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11404
Author(s):  
Qihua Lin ◽  
Qiuzhen Zhong ◽  
Zehuang Zhang

Sugar Will Eventually be Exported Transporters (SWEETs), a type of sugar efflux transporters, have been extensively researched upon due to their role in phloem loading for distant sugar transport, fruit development, and stress regulation, etc. Several plant species are known to possess the SWEET genes; however, little is known about their presence in Averrhoa Carambola L. (Oxalidaceae), an evergreen fruit crop (star fruit) in tropical and subtropical regions of Southeast Asia. In this study, we established an Averrhoa Carambola L. unigenes library from fruits of ‘XianMiyangtao’ (XM) by RNA sequencing (RNA-seq). A total of 99,319 unigenes, each longer than 200 bp with a total length was 72.00 Mb, were identified. A total of 51,642 unigenes (52.00%) were annotated. Additionally, 10 AcSWEET genes from the Averrhoa Carambola L. unigenes library were identified and classified, followed by a comprehensive analysis of their structures and conserved motif compositions, and evolutionary relationships. Moreover, the expression patterns of AcSWEETs in ‘XM’ cultivars during fruit ripening were confirmed using quantitative real-time PCR (qRT-PCR), combined with the soluble sugar and titratable acids content during ripening, showed that AcSWEET2a/2b and AcSWEET16b might participate in sugar transport during fruit ripening. This work presents a general profile of the AcSWEET gene family in Averrhoa Carambola L., which can be used to perform further studies on elucidating the functional roles of AcSWEET genes.


2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.



2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hanhan Xie ◽  
Dan Wang ◽  
Yaqi Qin ◽  
Anna Ma ◽  
Jiaxin Fu ◽  
...  

Abstract Background SWEETs (Sugar Will Eventually be Exported transporters) function as sugar efflux transporters that perform diverse physiological functions, including phloem loading, nectar secretion, seed filling, and pathogen nutrition. The SWEET gene family has been identified and characterized in a number of plant species, but little is known about in Litchi chinensis, which is an important evergreen fruit crop. Results In this study, 16 LcSWEET genes were identified and nominated according to its homologous genes in Arabidopsis and grapevine. Multiple sequence alignment showed that the 7 alpha-helical transmembrane domains (7-TMs) were basically conserved in LcSWEETs. The LcSWEETs were divided into four clades (Clade I to Clade IV) by phylogenetic tree analysis. A total of 8 predicted motifs were detected in the litchi LcSWEET genes. The 16 LcSWEET genes were unevenly distributed in 9 chromosomes and there was one pairs of segmental duplicated events by synteny analysis. The expression patterns of the 16 LcSWEET genes showed higher expression levels in reproductive organs. The temporal and spatial expression patterns of LcSWEET2a and LcSWEET3b indicated they play central roles during early seed development. Conclusions The litchi genome contained 16 SWEET genes, and most of the genes were expressed in different tissues. Gene expression suggested that LcSWEETs played important roles in the growth and development of litchi fruits. Genes that regulate early seed development were preliminarily identified. This work provides a comprehensive understanding of the SWEET gene family in litchi, laying a strong foundation for further functional studies of LcSWEET genes and improvement of litchi fruits.



PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009461
Author(s):  
Yajun Tang ◽  
Zhipeng Qu ◽  
Jiajun Lei ◽  
Reqing He ◽  
David L. Adelson ◽  
...  

Long noncoding RNAs (lncRNAs) are emerging as important regulators in plant development, but few of them have been functionally characterized in fruit ripening. Here, we have identified 25,613 lncRNAs from strawberry ripening fruits based on RNA-seq data from poly(A)-depleted libraries and rRNA-depleted libraries, most of which exhibited distinct temporal expression patterns. A novel lncRNA, FRILAIR harbours the miR397 binding site that is highly conserved in diverse strawberry species. FRILAIR overexpression promoted fruit maturation in the Falandi strawberry, which was consistent with the finding from knocking down miR397, which can guide the mRNA cleavage of both FRILAIR and LAC11a (encoding a putative laccase-11-like protein). Moreover, LAC11a mRNA levels were increased in both FRILAIR overexpressing and miR397 knockdown fruits, and accelerated fruit maturation was also found in LAC11a overexpressing fruits. Overall, our study demonstrates that FRILAIR can act as a noncanonical target mimic of miR397 to modulate the expression of LAC11a in the strawberry fruit ripening process.



2020 ◽  
Author(s):  
Tao Xie ◽  
Zhiquan Cai ◽  
Aiping Luan ◽  
Wei Zhang ◽  
Jing Wu ◽  
...  

Abstract Background: Pineapple plant usually has a capitulum. However, a fan-shaped inflorescence was evolved in an exceptional material, having multiple crown buds. In order to reveal the molecular mechanisms of the formation of the fan-shaped inflorescence, fruit traits and the transcriptional differences between a fan-shaped inflorescence (FI) and a capitulum inflorescence (CI) pineapples were analyzed in the three tissues, i.e., the flower stem apex (FIs and CIs), the base of the inflorescence (FIb and CIb), and the inflorescence axis (FIa and CIa).Results: Except for a clear differentiation of inflorescence morphology, no significant differences in the structure of inflorescence organs and the main nutritional components (soluble solids, soluble sugar, titratable acid, and VC) in fruits were found between the two pineapples. Between the fan- and capitulum-shaped inflorescences, a total of 5370 differentially expressed genes (DEGs) were identified across the three tissues; and 3142, 2526 and 2255 DEGs were found in the flower stem apex, the base of the inflorescence, and the inflorescence axis, respectively. Of these genes, there were 489 overlapping DEGs in all three tissue comparisons. In addition, 5769 DEGs were identified between different tissues within each pineapple. Functional analysis indicated between the two pineapples that 444 transcription factors (TFs) and 206 inflorescence development related genes (IDGs) were differentially expressed in at least one tissue comparison, while 45 TFs and 21 IDGs were overlapped across the 3 tissues. Among the 489 overlapping DEGs in the 3 tissue comparisons between the two pineapples, excluding the IDGs and TFs, 80 of them revealed a higher percentage of involvement in the biological processes relating to response to auxin, and reproductive processes. RNA-seq value and real-time quantitative PCR analysis exhibited the same gene expression patterns in the three tissues. Conclusions: Our result provided novel cues for understanding the molecular mechanisms of the formation of fan-shaped inflorescence in pineapple, making a valuable resource for the study of plant breeding and the speciation of the pineapples.



PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10934
Author(s):  
Ruihua Wang ◽  
Taili Han ◽  
Jifeng Sun ◽  
Ligong Xu ◽  
Jingjing Fan ◽  
...  

Ovate family proteins (OFPs) are a class of proteins with a conserved OVATE domain that contains approximately 70 amino acid residues. OFP proteins are plant-specific transcription factors that participate in regulating plant growth and development and are widely distributed in many plants. Little is known about OFPs in Brassica rapa to date. We identified 29 OFP genes in Brassica rapa and found that they were unevenly distributed on 10 chromosomes. Intron gain events may have occurred during the structural evolution of BraOFP paralogues. Syntenic analysis verified Brassica genome triplication, and whole genome duplication likely contributed to the expansion of the OFP gene family. All BraOFP genes had light responsive- and phytohormone-related cis-acting elements. Expression analysis from RNA-Seq data indicated that there were obvious changes in the expression levels of six OFP genes in the Brassica rapa hybrid, which may contribute to the formation of heterosis. Finally, we found that the paralogous genes had different expression patterns among the hybrid and its parents. These results provide the theoretical basis for the further analysis of the biological functions of OFP genes across the Brassica species.



2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ryoichi Yano ◽  
Tohru Ariizumi ◽  
Satoko Nonaka ◽  
Yoichi Kawazu ◽  
Silin Zhong ◽  
...  

AbstractMelon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (r > 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Luzhao Pan ◽  
Jiaqiu Zheng ◽  
Jia Liu ◽  
Jun Guo ◽  
Fawan Liu ◽  
...  

Acetylserotonin methyltransferase (ASMT) in plant species, one of the most important enzymes in melatonin biosynthesis, plays a rate-limiting role in the melatonin production. In this study, based on the whole genome sequence, we performed a systematic analysis for the ASMT gene family in pepper (Capsicum annuum L.) and analyzed their expression profiles during growth and development, as well as abiotic stresses. The results showed that at least 16 CaASMT genes were identified in the pepper genome. Phylogenetic analyses of all the CaASMTs were divided into three groups (group I, group II, and group III) with a high bootstrap value. Through the online MEME tool, six distinct motifs (motif 1 to motif 6) were identified. Chromosome location found that most CaASMT genes were mapped in the distal ends of the pepper chromosomes. In addition, RNA-seq analysis revealed that, during the vegetative and reproductive development, the difference in abundance and distinct expression patterns of these CaASMT genes suggests different functions. The qRT-PCR analysis showed that high abundance of CaASMT03, CaASMT04, and CaASMT06 occurred in mature green fruit and mature red fruit. Finally, using RNA-seq and qRT-PCR technology, we also found that several CaASMT genes were induced under abiotic stress conditions. The results will not only contribute to elucidate the evolutionary relationship of ASMT genes but also ascertain the biological function in pepper plant response to abiotic stresses.



2021 ◽  
Vol 12 ◽  
Author(s):  
Lan Jiang ◽  
Cheng Song ◽  
Xi Zhu ◽  
Jianke Yang

Tea (Camellia sinensis) is an important economic beverage crop. Its flowers and leaves could be used as healthcare tea for its medicinal value. SWEET proteins were recently identified in plants as sugar transporters, which participate in diverse physiological processes, including pathogen nutrition, seed filling, nectar secretion, and phloem loading. Although SWEET genes have been characterized and identified in model plants, such as Arabidopsis thaliana and Oryza sativa, there is very little knowledge of these genes in C. sinensis. In this study, 28 CsSWEETs were identified in C. sinensis and further phylogenetically divided into four subfamilies with A. thaliana. These identified CsSWEETs contained seven transmembrane helixes (TMHs) which were generated by an ancestral three-TMH unit with an internal duplication experience. Microsynteny analysis revealed that the large-scale duplication events were the main driving forces for members from CsSWEET family expansion in C. sinensis. The expression profiles of the 28 CsSWEETs revealed that some genes were highly expressed in reproductive tissues. Among them, CsSWEET1a might play crucial roles in the efflux of sucrose, and CsSWEET17b could control fructose content as a hexose transporter in C. sinensis. Remarkably, CsSWEET12 and CsSWEET17c were specifically expressed in flowers, indicating that these two genes might be involved in sugar transport during flower development. The expression patterns of all CsSWEETs were differentially regulated under cold and drought treatments. This work provided a systematic understanding of the members from the CsSWEET gene family, which would be helpful for further functional studies of CsSWEETs in C. sinensis.



2020 ◽  
Author(s):  
Meng Zhang ◽  
Yu Han ◽  
Yanhui Zhai ◽  
Xiangfei Ma ◽  
Xinglan An ◽  
...  

Abstract BackgroundTissue-specific fat deposition is regulated by a series of complex regulation mechanisms. Epigenetic regulations, such as circular RNAs (circRNAs), have been proved to be the crucial regulator of diseases, development, metabolism and adipogenesis. To investigate the functional roles of circRNAs in adipogenesis and tissue-specific fat deposition, we comprehensively analyzed the Ribo-Zero RNA-Seq and miRNAs data during chicken abdominal and intramuscular adipogenic differentiation. Results Here, we first reported circRNAs and miRNAs profiles during chicken adipogenic differentiation in adipocytes-derived from various adipose tissues. Large amounts of downregulated miRNAs might promote adipogenesis through activating their target genes which were related to fatty metabolism and adipogenic differentiation. Furthermore, we identified several candidate circRNAs by the correlation analysis between the expression levels of circRNAs and adipogenic genes, tissues as well as the dynamic expression patterns of circRNAs during adipogenic differentiation. Moreover, we constructed competing endogenous RNA (ceRNAs) networks during chicken intramuscular and abdominal adipogenesis through combining with miRNAs and mRNAs data. Several candidate circRNAs might affect adipogenesis by regulating miRNAs through PPAR and fatty acid metabolism related pathways, such as circLCLAT1, circFNDC3AL, circCLEC19A and circARMH1.ConclusionOver all, our result indicated that some tissue- or cell-specific circRNAs and miRNAs may have notable effects on chicken adipogenesis and tissue-specific fat deposition.



2020 ◽  
Vol 118 (1) ◽  
pp. e2022788118
Author(s):  
Lingcheng Zhu ◽  
Baiyun Li ◽  
Limin Wu ◽  
Huixia Li ◽  
Zhengyang Wang ◽  
...  

Sugar transport across tonoplasts is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. It remains unclear, however, how this process is regulated among different classes of sugar transporters. Here, we identified a tonoplast H+/glucose symporter, MdERDL6-1, from apples, which was highly expressed in fruits and exhibited expression patterns similar to those of the tonoplast H+/sugar antiporters MdTST1 and MdTST2. Overexpression ofMdERDL6-1unexpectedly increased not only glucose (Glc) concentration but also that of fructose (Fru) and sucrose (Suc) in transgenic apple and tomato leaves and fruits. RNA sequencing (RNA-seq) and expression analyses showed an up-regulation ofTST1andTST2in the transgenic apple and tomato lines overexpressingMdERDL6-1. Further studies established that the increased sugar concentration in the transgenic lines correlated with up-regulation ofTST1andTST2expression. Suppression or knockout ofSlTST1andSlTST2in theMdERDL6-1–overexpressed tomato background reduced or abolished the positive effect ofMdERDL6-1on sugar accumulation, respectively. The findings demonstrate a regulation ofTST1andTST2byMdERDL6-1, in which Glc exported by MdERDL6-1 from vacuole up-regulatesTST1andTST2to import sugars from cytosol to vacuole for accumulation to high concentrations. The results provide insight into the regulatory mechanism of sugar accumulation in vacuoles mediated by the coordinated action of two classes of tonoplast sugar transporters.



Sign in / Sign up

Export Citation Format

Share Document