scholarly journals The potential habitat of desert locusts is contracting: predictions under climate change scenarios

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12311
Author(s):  
Jingyun Guan ◽  
Moyan Li ◽  
Xifeng Ju ◽  
Jun Lin ◽  
Jianguo Wu ◽  
...  

Desert locusts are notorious for their widespread distribution and strong destructive power. Their influence extends from the vast arid and semiarid regions of western Africa to northwestern India. Large-scale locust outbreaks can have devastating consequences for food security, and their social impact may be long-lasting. Climate change has increased the uncertainty of desert locust outbreaks, and predicting suitable habitats for this species under climate change scenarios will help humans deal with the potential threat of locust outbreaks. By comprehensively considering climate, soil, and terrain variables, the maximum entropy (MaxEnt) model was used to predict the potential habitats of solitary desert locusts in the 2050s and 2070s under the four shared socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585) in the CMIP6 model. The modeling results show that the average area under the curve (AUC) and true skill statistic (TSS) reached 0.908 ± 0.002 and 0.701, respectively, indicating that the MaxEnt model performed extremely well and provided outstanding prediction results. The prediction results indicate that climate change will have an impact on the distribution of the potential habitat of solitary desert locusts. With the increase in radiative forcing overtime, the suitable areas for desert locusts will continue to contract, especially in the 2070s under the SSP585 scenario, and the moderately and highly suitable areas will decrease by 0.88 × 106 km2 and 1.55 × 106 km2, respectively. Although the potentially suitable area for desert locusts is contracting, the future threat posed by the desert locust to agricultural production and food security cannot be underestimated, given the combination of maintained breeding areas, frequent extreme weather events, pressure from population growth, and volatile sociopolitical environments. In conclusion, methods such as monitoring and early warning, financial support, regional cooperation, and scientific prevention and control of desert locust plagues should be further implemented.

2015 ◽  
Vol 8 ◽  
pp. 542
Author(s):  
José Edson Florentino de Morais ◽  
Thieres George Freire da Silva ◽  
Marcela Lúcia Barbosa ◽  
Wellington Jairo da Silva Diniz ◽  
Carlos André Alves de Souza ◽  
...  

O aumento na ocorrência de eventos climáticos extremos nas últimas décadas é uma forte evidência das mudanças climáticas. Em regiões Semiáridas, onde a pressão de desertificação tem se intensificado, são esperadas diminuição da disponibilidade de água e maior ocorrência de períodos seca, e, consequentemente, efeitos na resposta fisiológica das plantas. Assim, objetivou-se analisar os impactos dos cenários de mudanças climáticas sobre a duração do ciclo fenológico e a demanda de água do sorgo forrageiro e do feijão-caupi cultivados no Estado de Pernambuco. Foram utilizados os valores mensais da normal climatológica brilho solar, temperatura do ar, umidade relativa do ar e velocidade do vento de dez municípios. Considerou-se um aumento de 1,8°C (Cenário B2) e 4,0°C (Cenário A1F1) na temperatura do ar e um decréscimo de 5,0% dos valores absolutos de umidade relativa do ar, além do aumento de 22% na resistência estomática e de 4% no índice de área foliar. Com base nessas informações foram gerados três cenários: situação atual e projeções futuras para B2 e A1F1. Os resultados revelaram uma redução média de 11% (B2) e 20% (A1F1), e de 10% (B2) e 17% (A1F1) na duração do ciclo, e de 4% (B2) e 8% (A1F1), e 2% (B2) e 5% (A1F1) na demanda de água acumulada para o sorgo forrageiro e feijão-caupi, respectivamente. Conclui-se que a magnitude das reduções da duração do ciclo e a demanda de água simulada para as culturas do sorgo forrageiro e do feijão-caupi variaram espaço-temporalmente no Estado de Pernambuco com os cenários de mudanças climáticas.ABSTRACT The increase in the occurrence of extreme weather events in recent decades is a strong evidence of climate change. In semiarid regions, where the pressure of desertification has intensified, are expected to decrease in the availability of water and higher occurrence of drought periods, and, consequently, effects on physiological response of plants. Thus, the objective of analyzing the impacts of climate change scenarios on the duration of phenological cycle and water demand of forage sorghum and cowpea, grown in the State of Pernambuco. Monthly values were used normal climatological solar brightness, air temperature, relative humidity and wind speed of ten municipalities. It was considered an increase of 1.8° C (B2 Scenario) and 4.0° C (A1F1 Scenario) on air temperature and a decrease of 5.0% of the absolute values of relative humidity, in addition to the 22% increase in stomatal resistance and 4% in leaf area index. Based on this information were generated three scenarios: current situation and future projections for B2, A1F1. The results revealed an average reduction of 11% (B2) and 20% (A1F1), and 10% (B2) and 17% (A1F1) for the duration of the cycle, and 4% (B2) and 8% (A1F1), and 2% (B2) and 5% (A1F1) in accumulated water demand for forage sorghum and cowpea, respectively. It is concluded that the magnitude of the reductions in the duration of the cycle and the simulated water demand for crops of forage sorghum and cowpea ranged space-temporarily in the State of Pernambuco with climate change scenarios.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Ayse Gul Sarikaya ◽  
◽  
Omer K. Orucu ◽  

Arbutus andrachne L., the strawberry tree, is an evergreen shrub or small tree in the Turkish flora and has broad uses. The wood is used for decorative purposes, packaging, and manufacturing furniture. The fruits are edible and used in treating many kinds of diseases. However, global warming might affect the abundance of this symbolic plant's distribution, especially at higher latitudes. This study was conducted to determine the expected effects of climate change on A. andrachne. For this purpose, Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 were used to expect climate change scenarios for 2050 and 2070, and potential distribution areas of A. andrachne were presented. The results indicated that the distribution of A. andrachne would decrease in the southern regions of Turkey. However, the spread of the species could be expanded in the western and northern areas. It is also expected that there would be potential habitat losses, which would affect the distribution of A. andrachne.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1015
Author(s):  
Xiaotao Huang ◽  
Li Ma ◽  
Chunbo Chen ◽  
Huakun Zhou ◽  
Buqing Yao ◽  
...  

Sinadoxa corydalifolia is a perennial grass with considerable academic value as a rare species owing to habitat destruction and a narrow distribution. However, its distribution remains unclear. In this study, we predicted the distribution of Sinadoxa corydalifolia in the three-river region (the source of the Yangtze River, Yellow River, and Lancang River) under the context of climate change using the maximum entropy (MaxEnt) model. Under the current climate scenario, the suitable distribution mainly occurred in Yushu County and Nangqian County. The suitable distribution area of Sinadoxa corydalifolia covered 3107 km2, accounting for 0.57% of the three-river region. The mean diurnal air temperature range (Bio2), temperature seasonality (Bio4), and mean air temperature of the driest quarter (Bio9) contributed the most to the distribution model for Sinadoxa corydalifolia, with a cumulative contribution of 81.4%. The highest suitability occurred when air temperature seasonality (Bio4) ranged from 6500 to 6900. The highest suitable mean air temperature of the driest quarter ranged from −5 to 0 °C. The highest suitable mean diurnal temperature (Bio2) ranged from 8.9 to 9.7 °C. In future (2041–2060) scenarios, the suitable distribution areas of Sinadoxa corydalifolia from high to low are as follows: representative concentration pathway (RCP)26 (6171 km2) > RCP45 (6017 km2) > RCP80 (4238 km2) > RCP60 (2505 km2). In future (2061–2080) scenarios, the suitable distribution areas of Sinadoxa corydalifolia from high to low are as follows: RCP26 (18,299 km2) > RCP60 (11,977 km2) > RCP45 (10,354 km2) > RCP80 (7539 km2). In general, the suitable distribution will increase in the future. The distribution area of Sinadoxa corydalifolia will generally be larger under low CO2 concentrations than under high CO2 concentrations. This study will facilitate the development of appropriate conservation measures for Sinadoxa corydalifolia in the three-river region.


2012 ◽  
Vol 34 (2) ◽  
pp. 51-61
Author(s):  
Leszek Kuchar ◽  
IWAŃSKI SŁAWOMIR ◽  
Leszek Jelonek ◽  
Wiwiana Szalińska

Abstract Climate change, regardless of the causes shaping its rate and direction, can have far-reaching environmental, economic and social impact. A major aspect that might be transformed as a result of climate change are water resources of a catchment. The article presents a possible method of predicting water resource changes by using a meteorological data generator and classical hydrological models. The assessment of water resources in a catchment for a time horizon of 30-50 years is based on an analysis of changes in annual runoff that might occur in changing meteorological conditions. The model used for runoff analysis was the hydrological rainfall-runoff NAM model. Daily meteorological data essential for running the hydrological model were generated by means of SWGEN model. Meteorological data generated for selected climate change scenarios (GISS, CCCM and GFDL) for the years 2030 and 2050 enabled analysing different variants of climate change and their potential effects. The presented results refer to potential changes in water resources of the Kaczawa catchment. It should be emphasized that the obtained results do not say which of the climate change scenarios is more likely, but they present the consequences of climate change described by these scenarios.


2006 ◽  
Vol 19 (23) ◽  
pp. 6181-6194 ◽  
Author(s):  
Piers Mde F. Forster ◽  
Karl E. Taylor

Abstract A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphere–ocean general circulation models (AOGCMs). This “climate forcing” differs from the conventionally defined radiative forcing as it includes semidirect effects that account for certain short time scale responses in the troposphere. First, a climate feedback term is calculated from reported values of 2 × CO2 radiative forcing and surface temperature time series from 70-yr simulations by 20 AOGCMs. In these simulations carbon dioxide is increased by 1% yr−1. The derived climate feedback agrees well with values that are diagnosed from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor, and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. Partial compensation is found between longwave and shortwave feedback terms that lessens the intermodel differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in twentieth- and twenty-first-century simulations in the AOGCMs. The technique is validated using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings that are diagnosed agree with the conventional forcing time series within ∼10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of 2 differences in the longwave climate forcing time series, which may indicate problems with the modeling of well-mixed greenhouse gas changes. The simple diagnoses presented provides an important and useful first step for understanding differences in AOGCM integrations, indicating that some of the differences in model projections can be attributed to different prescribed climate forcing, even for so-called standard climate change scenarios.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 874
Author(s):  
Jinyue Song ◽  
Hua Zhang ◽  
Ming Li ◽  
Wuhong Han ◽  
Yuxin Yin ◽  
...  

The red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is an invasive pest, and it has spread rapidly all over the world. Predicting the suitable area of S. invicta growth in China will provide a reference that will allow for its invasion to be curbed. In this study, based on the 354 geographical distribution records of S. invicta, combined with 24 environmental factors, the suitable areas of S. invicta growth in China under current (2000s) and future (2030s and 2050s) climate scenarios (SSPs1-2.5s, SSPs2-3.5s and SSPs5-8.5s) were predicted by using the optimized MaxEnt model and geo-detector model. An iterative algorithm and knife-cut test were used to evaluate the important environmental factors that restrict the suitable area under the current climatic conditions. This study also used the response curve to determine the appropriate value of environmental factors to further predict the change and the center of gravity transfer of the suitable area under climate change. The optimized MaxEnt model has high prediction accuracy, and the working curve area (AUC) of the subjects is 0.974. Under climatic conditions, the suitable area is 81.37 × 104 km2 in size and is mainly located in the south and southeast of China. The main environmental factors affecting the suitable area are temperature (Bio1, Bio6, and Bio9), precipitation (Bio12 and Bio14) and NDVI. In future climate change scenarios, the total suitable area will spread to higher latitudes. This distribution will provide an important theoretical basis for relevant departments to rapidly prevent and control the invasion of S. invicta.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1816
Author(s):  
Gerson Meza Mori ◽  
Elgar Barboza Castillo ◽  
Cristóbal Torres Guzmán ◽  
Dany A. Cotrina Sánchez ◽  
Betty K. Guzman Valqui ◽  
...  

The spectacled, or Andean, bear (Tremarctos ornatus) is classified as vulnerable by the IUCN due to climate change and human-induced habitat fragmentation. There is an urgent need for the conservation of spectacled bear at real time. However, the lack of knowledge about the distribution of this species is considered as one of the major limitations for decision-making and sustainable conservation. In this study, 92 geo-referenced records of the spectacled bear, 12 environmental variables and the MaxEnt entropy modelling have been used for predictive modelling for the current and future (2050 and 2070) potential distribution of the spectacled bear in Amazonas, northeastern Peru. The areas of “high”, “moderate” and “low” potential habitat under current conditions cover 1.99% (836.22 km2), 14.46% (6081.88 km2) and 20.73% (8718.98 km2) of the Amazon, respectively. “High” potential habitat will increase under all climate change scenarios, while “moderate” and “low” potential habitat, as well as total habitat, will decrease over the time. The “moderate”, “low” and total potential habitat are distributed mainly in Yunga montane forest, combined grasslands/rangelands and secondary vegetation and Yunga altimontane (rain) forest, while “high” potential habitat is also concentrated in the Jalca. The overall outcome showed that the most of the important habitats of the spectacled bear are not part of the protected natural areas of Amazonas, under current as well as under future scenarios.


Author(s):  
Jyoti Tripathi ◽  
◽  
Prasad S. Variyar ◽  

Serious social, economic, and ecological consequences of climate change due to the high levels of greenhouse gases (GHGs) in our atmosphere resulting from a wide range of human activities including the burning of fossil fuels and land use have impacted weather events world over. Extreme weather events and warmer global temperatures are likely to be more frequent with an adverse overall effect on agricultural production unless there is an urgent reduction in GHG emissions. There is thus an immediate need for increasing adaptive capacity in agriculture to long-term climatic trends and increasing variability in weather patterns. Climate change also poses significant challenges to global food safety due to the emergence of new pathogens, insect pests, and toxicants. Food safety threats cause an enormous burden on economies due to disruptions or restrictions in global and regional agrifood trade, food loss, and associated income. Food safety thus plays a critical role across the four pillars of food security—availability, access, utilization, and stability. Climate change is likely to create new safety issues entailing reassessing our tolerance to risk and safety limits presently established for the human food chain. The present review focuses on the factors affecting food security and safety as a consequence of climate change and the pre- and postharvest strategies that need to be adopted to mitigate these effects for enhancing food safety and global food sufficiency in future.


2021 ◽  
Author(s):  
Michiel van Dijk ◽  
Tom Morley ◽  
Marie Luise Rau ◽  
Yashar Saghai

Abstract Ending hunger and achieving food security - one of the UN sustainable development goals - is a major global challenge. To inform the policy debate, quantified global scenarios and projections are used to assess long-term future global food security under a range of socio-economic and climate change scenarios. However, due to differences in model design and scenario assumptions, there is uncertainty about the range of food security projections and outcomes. We conducted a systematic literature review and meta-analysis to assess the range of future global food security projections to 2050. We reviewed 57 global food security projection and quantitative scenario studies that have been published over the last two decades and discussed the methodology, underlying drivers, indicators and projections. We harvested quantitative information from 26 studies to compare future trends of the two most used global food security indicators: per capita food demand (593 projections) and population at risk of hunger (358 projections). We found that across five representative scenarios that span divergent but plausible socio-economic futures total global food demand is expected to increase by +35% to +56% between 2010 and 2050, while population at risk of hunger is expected to change by -91% to +8% over the same period. If climate change is taken into account the range changes slightly (+30% to +62% for total food demand and -91% to +30% for population at risk of hunger) but overall we do not find statistical support for differences in projections with and without climate change. Finally, our review suggests that current modeling approaches can be improved by better incorporating several options that have been proposed to tackle global food security, in particular aquaculture and ‘future foods’, and expand the number of indicators to better cover the multiple dimensions of food security. The results of our review can be used to benchmark new global food security projections and quantitative scenario studies and inform policy analysis and the public debate on the future of food.


2020 ◽  
Author(s):  
Felicitas Hansen ◽  
Danijel Belusic ◽  
Klaus Wyser

<p>The large-scale atmospheric circulation is one of the most important factors influencing weather and climate conditions on different timescales. Its short- and long-term changes considerably determine both mean and extreme values of surface parameters like temperature or precipitation rates. Future changes of circulation patterns are of particular interest as these may significantly alter or amplify the expected thermodynamic changes due to changing concentrations of greenhouse gases, albedo and land use. We analyse both historical as well as future climate simulations of the SMHI large ensemble (S-LENS) performed with the EC-Earth3 global climate model to examine large-scale circulation situations and their association to extremes in precipitation and temperature over Sweden. Various methods exist to classify mostly sea level pressure or geopotential height fields into characteristic circulation types, and we compare several of these methods for their applicability to represent precipitation and temperature variability over our region of interest. S-LENS consists of a 50-member ensemble for a historical period (1970-2014) and four 50-member climate change scenario ensembles covering the 21st century differing in terms of assumptions made for future radiative forcing development. We study the efficiency of circulation types in the historical period to give rise to extremes, and examine further the frequency and within-type changes of those circulation types associated with extremes by the middle and the end of the 21st century under the different climate change scenarios. S-LENS with its comparatively large number of both multi-decadal scenarios and realizations for each scenario serves as a perfect testbed to study potential changes in events of low frequency within the environment of a single model.</p>


Sign in / Sign up

Export Citation Format

Share Document