scholarly journals Identification, expression and variation of theGNPDA2gene, and its association with body weight and fatness traits in chicken

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2129 ◽  
Author(s):  
Hongjia Ouyang ◽  
Huan Zhang ◽  
Weimin Li ◽  
Sisi Liang ◽  
Endashaw Jebessa ◽  
...  

Background.TheGNPDA2(glucosamine-6-phosphate deaminase 2) gene is a member ofGlucosamine-6-phosphate (GlcN6P) deaminase subfamily, which encoded an allosteric enzyme of GlcN6P. Genome-wide association studies (GWAS) have shown that variations of humanGNPDA2are associated with body mass index and obesity risk, but its function and metabolic implications remain to be elucidated.The object of this study was to characterize the gene structure, expression, and biological functions ofGNPDA2in chickens.Methods.Variant transcripts of chickenGNPDA2and their expression were investigated using rapid amplification of cDNA ends (RACE) system and real-time quantitative PCR technology. We detected theGNPDA2expression in hypothalamic, adipose, and liver tissue of Xinghua chickens with fasting and high-glucose-fat diet treatments, and performed association analysis of variations ofGNPDA2with productive traits in chicken. The function ofGNPDA2was further studied by overexpression and small interfering RNA (siRNA) methods in chicken preadipocytes.Results.Four chickenGNPDA2transcripts (cGNPDA2-a∼cGNPDA2-d) were identified in this study. The complete transcriptGNPDA2-a was predominantly expressed in adipose tissue (subcutaneous fat and abdominal fat), hypothalamus, and duodenum. In fasting chickens, the mRNA level ofGNPDA2was decreased by 58.8% (P< 0.05) in hypothalamus, and returned to normal level after refeeding. Chicken fed a high-glucose-fat diet increasedGNPDA2gene expression about 2-fold higher in adipose tissue (P< 0.05) than that in the control (fed a basal diet), but decreased its expression in hypothalamus. Two single-nucleotide polymorphisms of theGNPDA2gene were significantly associated with body weight and a number of fatness traits in chicken (P< 0.05).Conclusion.Our findings indicated that theGNPDA2gene has a potential roles in the regulation of body weight, fat and energy metabolism in chickens.

2016 ◽  
Vol 209 (2) ◽  
pp. 114-120 ◽  
Author(s):  
Martin Tesli ◽  
Katrine Verena Wirgenes ◽  
Timothy Hughes ◽  
Francesco Bettella ◽  
Lavinia Athanasiu ◽  
...  

BackgroundCommon variants in the Vaccinia-related kinase 2 (VRK2) gene have been associated with schizophrenia, but the relevance of its encoded protein VRK2 in the disorder remains unclear.AimsTo identify potential differences in VRK2 gene expression levels between schizophrenia, bipolar disorder, psychosis not otherwise specified (PNOS) and healthy controls.MethodVRK2 mRNA level was measured in whole blood in 652 individuals (schizophrenia, n = 201; bipolar disorder, n = 167; PNOS, n = 61; healthy controls, n = 223), and compared across diagnostic categories and subcategories. Additionally, we analysed for association between 1566 VRK2 single nucleotide polymorphisms and mRNA levels.ResultsWe found lower VRK2 mRNA levels in schizophrenia compared with healthy controls (P<10–12), bipolar disorder (P<10–12) and PNOS (P = 0.0011), and lower levels in PNOS than in healthy controls (P = 0.0042) and bipolar disorder (P = 0.00026). Expression quantitative trait loci in close proximity to the transcription start site of the short isoforms of the VRK2 gene were identified.ConclusionsAltered VRK2 gene expression seems specific for schizophrenia and PNOS, which is in accordance with findings from genome-wide association studies. These results suggest that reduced VRK2 mRNA levels are involved in the underlying mechanisms in schizophrenia spectrum disorders.


2011 ◽  
Vol 96 (10) ◽  
pp. E1661-E1665 ◽  
Author(s):  
Agné Kulyté ◽  
Mikael Rydén ◽  
Niklas Mejhert ◽  
Elisabeth Dungner ◽  
Eva Sjölin ◽  
...  

Abstract Context: Genome-wide association studies have identified single-nucleotide polymorphisms in approximately 40 loci associated with obesity-related traits. How these loci regulate obesity is largely unknown. One obesity-associated single-nucleotide polymorphism is close to the MTCH2 gene (mitochondrial carrier homolog 2). Objective: The objective of the study was to assess the expression of genes in obesity-associated loci in abdominal sc white adipose tissue (scWAT) in relation to obesity. A more comprehensive expression study was performed on MTCH2. Design: mRNA levels of 66 genes from 40 loci were determined by microarray in scWAT from lean and obese women (n = 30). MTCH2 mRNA was measured by quantitative RT-PCR in lean and obese before and after weight loss in intact adipose pieces and isolated adipocytes, paired samples of scWAT and omental WAT, and primary adipocyte cultures (n = 191 subjects in total). MTCH2 genotypes were compared with mRNA expression in 96 women. MTCH2 protein was examined in scWAT of 38 individuals. Results: Adipose expression of eight genes was significantly associated with obesity; of these, MTCH2 displayed the highest absolute signal. MTCH2 mRNA and protein expression was significantly increased in obese women but was not affected by weight loss. MTCH2 was enriched in isolated fat cells and increased during adipocyte differentiation. There was no cis influence of MTCH2 genotypes on mRNA levels. Conclusion: MTCH2 is highly expressed in human WAT and adipocytes with increased levels in obese women. These results suggest that MTCH2 may play a role in cellular processes underlying obesity.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1350
Author(s):  
Yasmina Kahoul ◽  
Frédérik Oger ◽  
Jessica Montaigne ◽  
Philippe Froguel ◽  
Christophe Breton ◽  
...  

Besides its role as a cell cycle and proliferation regulator, the INK4a/ARF (CDKN2A) locus and its associated pathways are thought to play additional functions in the control of energy homeostasis. Genome-wide association studies in humans and rodents have revealed that single nucleotide polymorphisms in this locus are risk factors for obesity and related metabolic diseases including cardiovascular complications and type-2 diabetes (T2D). Recent studies showed that both p16INK4a-CDK4-E2F1/pRB and p19ARF-P53 (p14ARF in humans) related pathways regulate adipose tissue (AT) physiology and adipocyte functions such as lipid storage, inflammation, oxidative activity, and cellular plasticity (browning). Targeting these metabolic pathways in AT emerged as a new putative therapy to alleviate the effects of obesity and prevent T2D. This review aims to provide an overview of the literature linking the INK4a/ARF locus with AT functions, focusing on its mechanisms of action in the regulation of energy homeostasis.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 772
Author(s):  
João Botelho ◽  
Vanessa Machado ◽  
José João Mendes ◽  
Paulo Mascarenhas

The latest evidence revealed a possible association between periodontitis and Parkinson’s disease (PD). We explored the causal relationship of this bidirectional association through two-sample Mendelian randomization (MR) in European ancestry populations. To this end, we used openly accessible data of genome-wide association studies (GWAS) on periodontitis and PD. As instrumental variables for periodontitis, seventeen single-nucleotide polymorphisms (SNPs) from a GWAS of periodontitis (1817 periodontitis cases vs. 2215 controls) and eight non-overlapping SNPs of periodontitis from an additional GWAS for validation purposes. Instrumental variables to explore for the reverse causation included forty-five SNPs from a GWAS of PD (20,184 cases and 397,324 controls). Multiple approaches of MR were carried-out. There was no evidence of genetic liability of periodontitis being associated with a higher risk of PD (B = −0.0003, Standard Error [SE] 0.0003, p = 0.26). The eight independent SNPs (B = −0.0000, SE 0.0001, p = 0.99) validated this outcome. We also found no association of genetically primed PD towards periodontitis (B = −0.0001, SE 0.0001, p = 0.19). These MR study findings do not support a bidirectional causal genetic liability between periodontitis and PD. Further GWAS studies are needed to confirm the consistency of these results.


2021 ◽  
Vol 14 (4) ◽  
pp. 287
Author(s):  
Courtney M. Vecera ◽  
Gabriel R. Fries ◽  
Lokesh R. Shahani ◽  
Jair C. Soares ◽  
Rodrigo Machado-Vieira

Despite being the most widely studied mood stabilizer, researchers have not confirmed a mechanism for lithium’s therapeutic efficacy in Bipolar Disorder (BD). Pharmacogenomic applications may be clinically useful in the future for identifying lithium-responsive patients and facilitating personalized treatment. Six genome-wide association studies (GWAS) reviewed here present evidence of genetic variations related to lithium responsivity and side effect expression. Variants were found on genes regulating the glutamate system, including GAD-like gene 1 (GADL1) and GRIA2 gene, a mutually-regulated target of lithium. In addition, single nucleotide polymorphisms (SNPs) discovered on SESTD1 may account for lithium’s exceptional ability to permeate cell membranes and mediate autoimmune and renal effects. Studies also corroborated the importance of epigenetics and stress regulation on lithium response, finding variants on long, non-coding RNA genes and associations between response and genetic loading for psychiatric comorbidities. Overall, the precision medicine model of stratifying patients based on phenotype seems to derive genotypic support of a separate clinical subtype of lithium-responsive BD. Results have yet to be expounded upon and should therefore be interpreted with caution.


Author(s):  
Mohamed Abdulkadir ◽  
Dongmei Yu ◽  
Lisa Osiecki ◽  
Robert A. King ◽  
Thomas V. Fernandez ◽  
...  

AbstractTourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive–compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene–environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene–environment studies.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1175
Author(s):  
Amarni L. Thomas ◽  
Judith Marsman ◽  
Jisha Antony ◽  
William Schierding ◽  
Justin M. O’Sullivan ◽  
...  

The RUNX1/AML1 gene encodes a developmental transcription factor that is an important regulator of haematopoiesis in vertebrates. Genetic disruptions to the RUNX1 gene are frequently associated with acute myeloid leukaemia. Gene regulatory elements (REs), such as enhancers located in non-coding DNA, are likely to be important for Runx1 transcription. Non-coding elements that modulate Runx1 expression have been investigated over several decades, but how and when these REs function remains poorly understood. Here we used bioinformatic methods and functional data to characterise the regulatory landscape of vertebrate Runx1. We identified REs that are conserved between human and mouse, many of which produce enhancer RNAs in diverse tissues. Genome-wide association studies detected single nucleotide polymorphisms in REs, some of which correlate with gene expression quantitative trait loci in tissues in which the RE is active. Our analyses also suggest that REs can be variant in haematological malignancies. In summary, our analysis identifies features of the RUNX1 regulatory landscape that are likely to be important for the regulation of this gene in normal and malignant haematopoiesis.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


2019 ◽  
Vol 29 (2) ◽  
pp. 589-602
Author(s):  
Chan Wang ◽  
Shufang Deng ◽  
Leiming Sun ◽  
Liming Li ◽  
Yue-Qing Hu

The genome-wide association studies aim at identifying common or rare variants associated with common diseases and explaining more heritability. It is well known that common diseases are influenced by multiple single nucleotide polymorphisms (SNPs) that are usually correlated in location or function. In order to powerfully detect association signals, it is highly desirable to take account of correlations or linkage disequilibrium (LD) information among multiple SNPs in testing for association. In this article, we propose a test SLIDE that depicts the difference of the average multi-locus genotypes between cases and controls and derive its variance–covariance matrix in the retrospective design. This matrix is composed of the pairwise LD between SNPs. Thus SLIDE can borrow the strength from an external database in the population of interest with a few thousands to hundreds of thousands individuals to improve the power for detecting association. Extensive simulations show that SLIDE has apparent superiority over the existing methods, especially in the situation involving both common and rare variants, both protective and deleterious variants. Furthermore, the efficiency of the proposed method is demonstrated in the application to the data from the Wellcome Trust Case Control Consortium.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


Sign in / Sign up

Export Citation Format

Share Document