scholarly journals Identification and expression analysis of the GDSL esterase/lipase family genes, and the characterization of SaGLIP8 in Sedum alfredii Hance under cadmium stress

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6741 ◽  
Author(s):  
He Li ◽  
Xiaojiao Han ◽  
Wenmin Qiu ◽  
Dong Xu ◽  
Ying Wang ◽  
...  

Background The herb Sedum alfredii (S. alfredii) Hance is a hyperaccumulator of heavy metals (cadmium (Cd), zinc (Zn) and lead (Pb)); therefore, it could be a candidate plant for efficient phytoremediation. The GDSL esterase/lipase protein (GELP) family plays important roles in plant defense and growth. Although the GELP family members in a variety of plants have been cloned and analyzed, there are limited studies on the family’s responses to heavy metal-stress conditions. Methods Multiple sequence alignments and phylogenetic analyses were performed according to the criteria described. A WGCNA was used to construct co-expression regulatory networks. The roots of S. alfredii seedlings were treated with 100 µM CdCl2 for qRT-PCR to analyze expression levels in different tissues. SaGLIP8 was transformed into the Cd sensitive mutant strain yeast Δycf1 to investigate its role in resistance and accumulation to Cd. Results We analyzed GELP family members from genomic data of S. alfredii. A phylogenetic tree divided the 80 identified family members into three clades. The promoters of the 80 genes contained certain elements related to abiotic stress, such as TC-rich repeats (defense and stress responsiveness), heat shock elements (heat stress) and MYB-binding sites (drought-inducibility). In addition, 66 members had tissue-specific expression patterns and significant responses to Cd stress. In total, 13 hub genes were obtained, based on an existing S. alfredii transcriptome database, that control 459 edge genes, which were classified into five classes of functions in a co-expression subnetwork: cell wall and defense function, lipid and esterase, stress and tolerance, transport and transcription factor activity. Among the hub genes, Sa13F.102 (SaGLIP8), with a high expression level in all tissues, could increase Cd tolerance and accumulation in yeast when overexpressed. Conclusion Based on genomic data of S. alfredii, we conducted phylogenetic analyses, as well as conserved domain, motif and expression profiling of the GELP family under Cd-stress conditions. SaGLIP8 could increase Cd tolerance and accumulation in yeast. These results indicated the roles of GELPs in plant responses to heavy metal exposure and provides a theoretical basis for further studies of the SaGELP family’s functions.

Genome ◽  
2021 ◽  
Author(s):  
Yuan Ma ◽  
Kuichen Liu ◽  
Chunyu Zhang ◽  
Feng Lin ◽  
Wenbo Hu ◽  
...  

The soybean can provide rich protein and fat and has great economic value worldwide. Cadmium (Cd) is a toxic heavy metal to organisms. It can accumulate in plants and be transmitted to the human body via food chain. Cd is a serious threat to soybean development, especially to root growth. Some soybean cultivars present tolerant symptoms under Cd stress; however, the potential mechanisms are not fully understood. Here, we optimized RNA-seq to identify the differentially expressed genes (DEGs) in Cd-sensitive (KUAI) and Cd-tolerant (KAIYU) soybean roots and compared the DEGs between KAIYU and KUAI. A total of 1,506 and 1,870 DEGs were identified in the roots of KUAI and KAIYU, respectively. Through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene function analyses, we found that genes related to antioxidants and sequestration were responsible for Cd tolerance in KAIYU. In addition, overexpression of Glyma11g02661, which encodes a heavy metal transporting ATPase, significantly improved Cd tolerance in transgenic hairy roots. These results provide a preliminary understanding of the tolerance mechanisms in response to Cd stress in soybean root development and are of great importance in developing Cd-resistant soybean cultivars by using the identified DEGs through genetic modification.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan C. Muñoz-Escalante ◽  
Andreu Comas-García ◽  
Sofía Bernal-Silva ◽  
Daniel E. Noyola

AbstractRespiratory syncytial virus (RSV) is a major cause of respiratory infections and is classified in two main groups, RSV-A and RSV-B, with multiple genotypes within each of them. For RSV-B, more than 30 genotypes have been described, without consensus on their definition. The lack of genotype assignation criteria has a direct impact on viral evolution understanding, development of viral detection methods as well as vaccines design. Here we analyzed the totality of complete RSV-B G gene ectodomain sequences published in GenBank until September 2018 (n = 2190) including 478 complete genome sequences using maximum likelihood and Bayesian phylogenetic analyses, as well as intergenotypic and intragenotypic distance matrices, in order to generate a systematic genotype assignation. Individual RSV-B genes were also assessed using maximum likelihood phylogenetic analyses and multiple sequence alignments were used to identify molecular markers associated to specific genotypes. Analyses of the complete G gene ectodomain region, sequences clustering patterns, and the presence of molecular markers of each individual gene indicate that the 37 previously described genotypes can be classified into fifteen distinct genotypes: BA, BA-C, BA-CC, CB1-THB, GB1-GB4, GB6, JAB1-NZB2, SAB1, SAB2, SAB4, URU2 and a novel early circulating genotype characterized in the present study and designated GB0.


2021 ◽  
Vol 273 ◽  
pp. 116529
Author(s):  
Minwei Chai ◽  
Ruili Li ◽  
Yuan Gong ◽  
Xiaoxue Shen ◽  
Lingyun Yu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Metin Turan ◽  
Güleray Ağar ◽  
Atilla Dursun ◽  
...  

AbstractCadmium (Cd) is a toxic and very mobile heavy metal that can be adsorbed and uptaken by plants in large quantities without any visible sign. Therefore, stabilization of Cd before uptake is crucial to the conservation of biodiversity and food safety. Owing to the high number of carboxyl and phenolic hydroxyl groups in their structure, humic substances form strong bonds with heavy metals which makes them perfect stabilizing agents. The aim of this study was to determine the effects of humic and fulvic acid (HA + FA) levels (0, 3500, 5250, and 7000 mg/L) on alleviation of Cadmium (Cd) toxicity in garden cress (Lepidium sativum) contaminated with Cd (CdSO4.8H2O) (0, 100, and 200 Cd mg/kg) under greenhouse conditions. Our results showed that, Cd stress had a negative effect on the growth of garden cress, decreased leaf fresh, leaf dry, root fresh and root dry weights, leaf relative water content (LRWC), and mineral content except for Cd, and increased the membrane permeability (MP) and enzyme (CAT, SOD and POD) activity. However, the HA + FA applications decreased the adverse effects of the Cd pollution. At 200 mg/kg Cd pollution, HA + FA application at a concentration of 7000 mg/L increased the leaf fresh, leaf dry, root fresh, root dry weights, stem diameter, leaf area, chlorophyll reading value (CRV), MP, and LRWC values by 262%, 137%, 550%,133%, 92%, 104%, 34%, 537%, and 32% respectively, compared to the control. Although the highest H2O2, MDA, proline and sucrose values were obtained at 200 mg/L Cd pollution, HA + FA application at a concentration of 7000 mg/L successfully alleviated the deleterious effects of Cd stress by decreasing H2O2, MDA, proline, and sucrose values by 66%, 68%, 70%, and 56%, respectively at 200 mg/kg Cd pollution level. HA + FA application at a concentration of 7000 mg/L successfully mitigated the negative impacts of Cd pollution by enhanced N, P, K, Ca, Mg, Fe, Mn, Cu, Mn, Zn, and B by 75%, 23%, 84%, 87%, 40%, 85%, 143%, 1%, 65%, and 115%, respectively. In addition, HA + FA application at a concentration of 7000 mg/L successfully reduced Cd uptake by 95% and Cl uptake by 80%. Considering the plant growth parameters, the best results were determined when HA + FA concentration was 7000 mg/L. We have shown that, it is critical to apply a humic substance with high percentage of FA, which was 10% in this study, to mitigate the adverse effects of heavy metal stress on plant growth. In conclusion, the application of HA + FA may be suggested as an effective solution for reducing the Cd uptake of the plants by stabilizing Cd in soil and preventing translocation of Cd from the roots of plant to its shoot and leaves.


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e039541
Author(s):  
Jun Ho Ji ◽  
Mi Hyeon Jin ◽  
Jung-Hun Kang ◽  
Soon Il Lee ◽  
Suee Lee ◽  
...  

ObjectivesTo investigate the associations between heavy metal exposure and serum ferritin levels, physical measurements and type 2 diabetes mellitus (DM).DesignA retrospective cohort study.SettingChangwon, the location of this study, is a Korean representative industrial city. Data were obtained from medical check-ups between 2002 and 2018.ParticipantsA total of 34 814 male subjects were included. Of them, 1035 subjects with lead exposure, 200 subjects with cadmium exposure and the 33 579 remaining were assigned to cohort A, cohort B and the control cohort, respectively. Data including personal history of alcohol and smoking, age, height, weight, the follow-up duration, haemoglobin A1c (HbA1c), fasting blood sugar (FBS), ferritin levels, and lead and cadmium levels within 1 year after exposure were collected.Primary outcome measureIn subjects without diabetes, changes in FBS and HbA1c were analysed through repeated tests at intervals of 1 year or longer after the occupational exposure to heavy metals.ResultsIn Cohort A, DM was diagnosed in 33 subjects. There was a significant difference in lead concentrations between the subjects diagnosed with DM and those without DM during the follow-up period (3.94±2.92 mg/dL vs 2.81±2.03 mg/dL, p=0.002). Simple exposure to heavy metals (lead and cadmium) was not associated with DM in Cox regression models (lead exposure (HR) 1.01, 95% CI: 0.58 to 1.77, p 0.971; cadmium exposure HR 1.48, 95% CI: 0.61 to 3.55, p=0.385). Annual changes in FBS according to lead concentration at the beginning of exposure showed a positive correlation (r=0.072, p=0.032).ConclusionOur findings demonstrated that simple occupational exposure to heavy metals lead and cadmium was not associated with the incidence of DM. However, lead concentrations at the beginning of the exposure might be an indicator of DM and glucose elevations.


2015 ◽  
Vol 30 (3) ◽  
pp. 272 ◽  
Author(s):  
Nam Hee Kim ◽  
Young Youl Hyun ◽  
Kyu-Beck Lee ◽  
Yoosoo Chang ◽  
Seungho Rhu ◽  
...  

Zootaxa ◽  
2021 ◽  
Vol 4995 (2) ◽  
pp. 334-344
Author(s):  
QIAN ZHOU ◽  
FAHUI TANG ◽  
YUANJUN ZHAO

During a survey of parasitic ciliates in Chongqing, China, Trichodina matsu Basson & Van As, 1994 was isolated from gills of Tachysurus fulvidraco. Furthermore, the 18S rRNA gene and ITS-5.8S rRNA region of T. matsu were sequenced for the first time and applied for the species identification and comparison with similar species in the present study. Based on the morphological and molecular comparisons, the results indicate that T. matsu is an ectoparasite specific for the Siluriformes catfish. Based on the analyses of genetic distance, multiple sequence alignments, and phylogenetic analyses, no obvious differentiation within populations of T. matsu was found. In addition, the ‘Trichodina hyperparasitis’ (KX904933) in GenBank is a misidentification and appears to be conspecific with T. matsu according to the comparison of morphological and molecular data.  


Author(s):  
Made Rahayu Kusumadewi ◽  
I Wayan Budiarsa Suyasa ◽  
I Ketut Berata

Tukad Badung River is one of the potential contamination of heavy metal sare very highin the city of Denpasar. Tilapia (Oreochromis mossambicus) isa commonspecies of fish found in the river and became the object of fishing by the public. The fish is usually consume das a food ingredient forever yangler. Fish can be used as bio-indicators of chemical contamination in the aquatic environment. Determination of heavy metal bioconcentration and analysis of liver histopathology gills organs and muscles is performed to determine the content of heavy metals Pb, Cd, and Cr+6, and the influence of heavy metal exposure to changes in organ histopathology Tilapia that live in Tukad Badung. In this observational study examined the levels of heavy metal contamination include Pb, Cd and Cr+6 in Tilapia meat with AAS method (Atomic Absorption Spectrofotometric), and observe the histopathological changes in organ preparations gills, liver, and muscle were stained with HE staining (hematoxylin eosin). Low Pb content of the fish that live in Tukad Badung 0.8385 mg/kg and high of 20.2600 mg/kg. The content of heavy metals Pb is above the quality standards specified in ISO 7378 : 2009 in the amount of 0.3 mg / kg. The content of Cr+6 low of 1.1402 mg / kg and the highest Cr+6 is 6.2214 mg / kg. The content of Cr+6 is above the quality standards established in the FAO Fish Circular 764 is equal to 1.0 mg / kg. In fish with Pb bioconcentration of 0.8385 mg / kg and Cr+6 of 1.1402 mg / kg was found that histopathological changes gill hyperplasia and fusion, the liver was found degeneration, necrosis, and fibrosis, and in muscle atrophy found. Histopathologicalchangessuch asedema and necrosis ofthe liveris foundin fishwith Pb bioconcentration of 4.5225mg/kg and Cr+6 amounted to2.5163mg/kg. Bio concentration of heavy metal contamination of lead (Pb) and hexavalent chromium (Cr+6) on Tilapia ( Oreochromis mossambicus ) who lives in Tukad Badung river waters exceed the applicable standard. Histopathological changes occur in organs gills, liver, and muscle as a result of exposure to heavy metals lead and hexavalent chromium. Advised the people not to eat Tilapia that live in Tukad Badung


Sign in / Sign up

Export Citation Format

Share Document