scholarly journals Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8704 ◽  
Author(s):  
Hongju Jian ◽  
Ling Xie ◽  
Yanhua Wang ◽  
Yanru Cao ◽  
Mengyuan Wan ◽  
...  

The winter oilseed ecotype is more tolerant to low temperature than the spring ecotype. Transcriptome and metabolome analyses of leaf samples of five spring Brassica napus L. (B. napus) ecotype lines and five winter B. napus ecotype lines treated at 4 °C and 28 °C were performed. A total of 25,460 differentially expressed genes (DEGs) of the spring oilseed ecotype and 28,512 DEGs of the winter oilseed ecotype were identified after cold stress; there were 41 differentially expressed metabolites (DEMs) in the spring and 47 in the winter oilseed ecotypes. Moreover, more than 46.2% DEGs were commonly detected in both ecotypes, and the extent of the changes were much more pronounced in the winter than spring ecotype. By contrast, only six DEMs were detected in both the spring and winter oilseed ecotypes. Eighty-one DEMs mainly belonged to primary metabolites, including amino acids, organic acids and sugars. The large number of specific genes and metabolites emphasizes the complex regulatory mechanisms involved in the cold stress response in oilseed rape. Furthermore, these data suggest that lipid, ABA, secondary metabolism, signal transduction and transcription factors may play distinct roles in the spring and winter ecotypes in response to cold stress. Differences in gene expression and metabolite levels after cold stress treatment may have contributed to the cold tolerance of the different oilseed ecotypes.

2020 ◽  
Author(s):  
Changbing Huang ◽  
Chun Jiang ◽  
limin Jin ◽  
Huanchao Zhang

Abstract Background:Hemerocallis fulva is a perennial herb belonging to Hemerocallis of Hemerocallis. Because of the large and bright colors, it is often used as a garden ornamental plant. But most varieties of H. fulva on the market will wither in winter, which will affect their beauty. It is very important to study the effect of low temperature stress on the physiological indexes of H. fulva and understand the cold tolerance of different H. fulva. MiRNA is a kind of endogenous non coding small molecular RNA with length of 21-24nt. It mainly inhibits protein translation by cutting target genes, and plays an important role in the development of organisms, gene expression and biological stress. Low temperature is the main abiotic stress affecting the production of H. fulva in China, which hinders the growth and development of plants. A comprehensive understanding of the expression pattern of microRNA in H. fulva under low temperature stress can improve our understanding of microRNA mediated stress response. Although there are many studies on miRNAs of various plants under cold stress at home and abroad, there are few studies on miRNAs related to cold stress of H. fulva. It is of great significance to explore the cold stress resistant gene resources of H. fulva, especially the identification and functional research of miRNA closely related to cold stress, for the breeding of excellent H. fulva.Results A total of 5619 cold-responsive miRNAs, 315 putative novel and 5 304 conserved miRNAs, were identified from the leaves and roots of two different varieties ‘Jinyan’ (cold-tolerant) and ‘Lucretius ’ (cold-sensitive), which were stressed under -4 oC for 24 h. Twelve conserved and three novel miRNAs (novel-miR10, novel-miR19 and novel-miR48) were differentially expressed in leaves of ‘Jinyan’ under cold stress. Novel-miR19, novel-miR29 and novel-miR30 were up-regulated in roots of ‘Jinyan’ under cold stress. Thirteen and two conserved miRNAs were deferentially expressed in leaves and roots of ‘Lucretius’ after cold stress. The deferentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR156, miR166 and miR319 families. A total of 6 598 target genes for 6 516 known miRNAs and 82 novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Ten differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR(q-PCR), and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR156a-3-p, miR319a, and novel-miR19) may play important roles in plant response to cold stress.Conclusions Our study indicates that some putative target genes and miRNA mediated metabolic processes and stress responses are significant to cold tolerance in H. fulva.


2020 ◽  
Vol 11 ◽  
Author(s):  
Carole Grasso ◽  
David A. Eccles ◽  
Stepana Boukalova ◽  
Marie-Sophie Fabre ◽  
Rebecca H. Dawson ◽  
...  

Tumor cells without mitochondrial (mt) DNA (ρ0 cells) are auxotrophic for uridine, and their growth is supported by pyruvate. While ATP synthesis in ρ0 cells relies on glycolysis, they fail to form tumors unless they acquire mitochondria from stromal cells. Mitochondrial acquisition restores respiration that is essential for de novo pyrimidine biosynthesis and for mitochondrial ATP production. The physiological processes that underpin intercellular mitochondrial transfer to tumor cells lacking mtDNA and the metabolic remodeling and restored tumorigenic properties of cells that acquire mitochondria are not well understood. Here, we investigated the changes in mitochondrial and nuclear gene expression that accompany mtDNA deletion and acquisition in metastatic murine 4T1 breast cancer cells. Loss of mitochondrial gene expression in 4T1ρ0 cells was restored in cells recovered from subcutaneous tumors that grew from 4T1ρ0 cells following acquisition of mtDNA from host cells. In contrast, the expression of most nuclear genes that encode respiratory complex subunits and mitochondrial ribosomal subunits was not greatly affected by loss of mtDNA, indicating ineffective mitochondria-to-nucleus communication systems for these nuclear genes. Further, analysis of nuclear genes whose expression was compromised in 4T1ρ0 cells showed that immune- and stress-related genes were the most highly differentially expressed, representing over 70% of those with greater than 16-fold higher expression in 4T1 compared with 4T1ρ0 cells. The monocyte recruiting chemokine, Ccl2, and Psmb8, a subunit of the immunoproteasome that generates MHCI-binding peptides, were the most highly differentially expressed. Early monocyte/macrophage recruitment into the tumor mass was compromised in 4T1ρ0 cells but recovered before mtDNA could be detected. Taken together, our results show that mitochondrial acquisition by tumor cells without mtDNA results in bioenergetic remodeling and re-expression of genes involved in immune function and stress adaptation.


2016 ◽  
Vol 3 (7) ◽  
pp. 160106 ◽  
Author(s):  
Masaharu Tsuji

Microbes growing at subzero temperatures encounter numerous growth constraints. However, fungi that inhabit cold environments can grow and decompose organic compounds under subzero temperatures. Thus, understanding the cold-adaptation strategies of fungi under extreme environments is critical for elucidating polar-region ecosystems. Here, I report that two strains of the Antarctic basidiomycetous yeast Mrakia blollopis exhibited distinct growth characteristics under subzero conditions: SK-4 grew efficiently, whereas TKG1-2 did not. I analysed the metabolite responses elicited by cold stress in these two M. blollopis strains by using capillary electrophoresis–time-of-flight mass spectrometry. M. blollopis SK-4, which grew well under subzero temperatures, accumulated high levels of TCA-cycle metabolites, lactic acid, aromatic amino acids and polyamines in response to cold shock. Polyamines are recognized to function in cell-growth and developmental processes, and aromatic amino acids are also known to improve cell growth at low temperatures. By contrast, in TKG1-2, which did not grow efficiently, cold stress strongly induced the metabolites of the TCA cycle, but other metabolites were not highly accumulated in the cell. Thus, these differences in metabolite responses could contribute to the distinct abilities of SK-4 and TKG1-2 cells to grow under subzero temperature conditions.


2012 ◽  
Vol 78 (9) ◽  
pp. 3442-3457 ◽  
Author(s):  
Michael S. Schwalbach ◽  
David H. Keating ◽  
Mary Tremaine ◽  
Wesley D. Marner ◽  
Yaoping Zhang ◽  
...  

ABSTRACTThe physiology of ethanologenicEscherichia coligrown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into howE. coliresponds to such hydrolysates, we studied anE. coliK-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate,E. coliceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.


2005 ◽  
Vol 22 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Kristin G. Nørsett ◽  
Astrid Lægreid ◽  
Mette Langaas ◽  
Sara Wörlund ◽  
Reidar Fossmark ◽  
...  

Potent acid inhibition with proton pump inhibitors (PPIs) is widely used in clinical medicine, especially for gastroesophageal reflux disease. PPIs cause profound changes in the intragastric environment with near-neutral pH and increase serum concentration of the gastric secretagogue hormone gastrin. Long-term hypergastrinemia increases mucosal thickness and enterochromaffin-like cell density in gastric corpus mucosa and results in development of gastric carcinoids in experimental animals. Our aim was to study responses to potent acid inhibition by characterizing genome-wide gene expression changes in gastric corpus mucosa in rats dosed with the PPI omeprazole. Nine rats received 400 μmol/kg omeprazole daily for 10 wk. Seven rats received vehicle only. Analysis of gastric corpus with microarrays representing 11,848 genes identified 134 genes with changed gene expression levels in omeprazole-dosed rats. Several of the identified genes were previously known to be affected by potent acid inhibition. Of the 62 genes with known functions that changed gene expression levels after PPI dosing, 27 are known to be involved in proliferation and apoptosis and immune, inflammatory, and stress responses. Our study indicates that microarray analysis can detect relevant gene expression changes in the complex gastric tissue, and that cellular processes involved in cell growth and defense responses are strongly affected by PPI dosing. Many genes are identified that were not previously known to be affected by inhibition of gastric acid secretion or that have unknown biological functions. Characterization of the roles of these genes may give new insight into molecular responses to treatment with PPIs.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 514
Author(s):  
Roxane Verdikt ◽  
Olivier Hernalsteens ◽  
Carine Van Lint

Eradicating HIV-1 in infected individuals will not be possible without addressing the persistence of the virus in its multiple reservoirs. In this context, the molecular characterization of HIV-1 persistence is key for the development of rationalized therapeutic interventions. HIV-1 gene expression relies on the redundant and cooperative recruitment of cellular epigenetic machineries to cis-regulatory proviral regions. Furthermore, the complex repertoire of HIV-1 repression mechanisms varies depending on the nature of the viral reservoir, although, so far, few studies have addressed the specific regulatory mechanisms of HIV-1 persistence in other reservoirs than the well-studied latently infected CD4+ T cells. Here, we present an exhaustive and updated picture of the heterochromatinization of the HIV-1 promoter in its different reservoirs. We highlight the complexity, heterogeneity and dynamics of the epigenetic mechanisms of HIV-1 persistence, while discussing the importance of further understanding HIV-1 gene regulation for the rational design of novel HIV-1 cure strategies.


2019 ◽  
Author(s):  
Rachel M. Wright ◽  
Adrienne M.S. Correa ◽  
Lucinda A. Quigley ◽  
Sarah W. Davies

AbstractAbout 160 km south of the Texas–Louisiana border, the East and West Flower Garden Banks (FGB) have maintained >50% coral cover with infrequent and minor incidents of disease or bleaching since monitoring began in the 1970s. However, a storm that generated coastal flooding, which ultimately interacted with the reef system, triggered a mortality event in 2016 that killed 2.6% of the East FGB. To capture the immediate effects of storm-driven freshwater runoff on coral and symbiont physiology, we leveraged the heavy rainfall associated with Hurricane Harvey in late August 2017 by sampling FGB corals at two times: September 2017, when salinity was reduced; and one month later when salinity had returned to typical levels (~36 ppt in October 2017). Tissue samples (N = 47) collected midday were immediately preserved for gene expression profiling from two congeneric coral species (Orbicella faveolata and Orbicella franksi) from the East and West FGB to determine the physiological consequences of storm-derived runoff. In the coral, differences between host species and sampling time points accounted for the majority of differentially expressed genes. Gene ontology enrichment for genes differentially expressed immediately after Hurricane Harvey indicated increases in cellular oxidative stress responses. Although tissue loss was not observed on FGB reefs following Hurricane Harvey, our results suggest that poor water quality following this storm caused FGB corals to experience sub-lethal stress. We also found dramatic expression differences across sampling time points in the coral’s algal symbiont, Breviolum minutum. Some of these differentially expressed genes may be involved in the symbionts’ response to changing environments, whereas a group of differentially expressed post-transcriptional RNA modification genes also suggest a critical role of post-transcriptional processing in symbiont acclimatization. In this study, we cannot disentangle the effects of reduced salinity from the collection time point, so these expression patterns may also be related to seasonality. These findings highlight the urgent need for continued monitoring of these reef systems to establish a baseline for gene expression of healthy corals in the FGB system across seasons, as well as the need for integrated solutions to manage stormwater runoff in the Gulf of Mexico.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Fuqiang Yin ◽  
Ming Liu ◽  
Jian Gao ◽  
Wenyou Zhang ◽  
Cheng Qin ◽  
...  

AbstractTobacco (Nicotiana tabacum L.) is an economically important and relatively drought-tolerant crop grown around the world. However, the molecular regulatory mechanisms involved in tobacco root development in response to drought stress are not wellknown. To gain insight into the transcriptome dynamics associated with drought resistance, genome-wide gene expression profiling of roots from a tobacco cultivar (Honghua Dajinyuan, a major flue-cured tobacco cultivar in Southwest China) under 20% PEG6000 treatment for 0, 6 h and 48 h were conducted using Solexa sequencing (Illumina Inc., San Diego, CA, USA). Over five million tags were generated from tobacco roots, including 229,344, 221,248 and 242,065 clean tags in three libraries, respectively. The most differentially expressed tags, with either log2FC > 2.0 for up-regulated genes or log2FC < -2.0 for down regulated genes (p < 0.001), were analyzed further. In comparison to the control, 1476 up-regulated and 1574 down-regulated differentially expressed genes (DEGs) were identified, except for unknown transcripts, which were grouped into 43 functional categories involved in seven significant pathways. The most enriched categories were those that were populated by transcripts involved in metabolism, signal transduction and cellular transport. Many genes and/or biological pathways were found to be common among the three libraries, for example, genes participating in transport, stress response, auxin transport and signaling, etc. Next, the expression patterns of 12 genes were assessed with quantitative real-time PCR, the results of which agreed with the Solexa analysis. In conclusion, we revealed complex changes in the transcriptome during tobacco root development related to drought resistance, and provided a comprehensive set of data that is essential to understanding the molecular regulatory mechanisms involved. These data may prove valuable in future studies of the molecular mechanisms regulating root development in response to drought stress in tobacco and other plants.


Sign in / Sign up

Export Citation Format

Share Document