scholarly journals Comparative study of gut microbiota in Tibetan wild asses (Equus kiang) and domestic donkeys (Equus asinus) on the Qinghai-Tibet plateau

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9032 ◽  
Author(s):  
Hongjin Liu ◽  
Xinquan Zhao ◽  
Xueping Han ◽  
Shixiao Xu ◽  
Liang Zhao ◽  
...  

Tibetan wild asses (Equus Kiang) are the only wild species of perissodactyls on the Qinghai-Tibet Plateau and appears on the International Union for Conversation of Nature (IUCN) 2012 Red List of threatened species. Therefore, understanding the gut microbiota composition and function of wild asses can provide a theoretical for the situ conservation of wild animals in the future.In this study, we measured the dry matter digestion by the 4 molar hydrochloric acid (4N HCL) acid-insoluble ash method and analyzed the intestinal microbiota of wild asses and domestic donkeys by high-throughput sequencing of the 16s rDNA genes in V3–V4 regions. The results showed that the dry matter digestion in wild asses was significantly higher than in domestic donkeys (P < 0.05). No significant difference in alpha diversity was detected between these two groups. Beta diversity showed that the bacterial community structure of wild asses was acutely different from domestic donkeys. At the phylum level, the two dominant phyla Bacteroidetes and Firmicutes in wild asses were significantly higher than that in domestic donkeys. At the genus level, Ruminococcaceae_NK4A214, Phascolarctobacterium, Coprostanoligenes_group, Lachnospiraceae_XPB1014_group and Akkermansia in wild asses were significantly higher than in domestic donkeys. Moreover, statistical comparisons showed that 40 different metabolic pathways exhibited significant differences. Among them, 29 pathways had richer concentrations in wild asses than domestic donkeys, mainly included amino acid metabolism, carbohydrate metabolism, and energy metabolism. Of note, network analysis showed that wild asses harbored a relatively more complex bacterial network than domestic donkeys, possibly reflecting the specific niche adaption of gut bacterial communities through species interactions. The overall results indicated that wild asses have advantages over domestic donkeys in dry matter digestion, gut microbial community composition and function, and wild asses have their unique intestinal flora to adapt high altitudes on the Qinghai-Tibet plateau.


2019 ◽  
Author(s):  
Hongjin Liu ◽  
Xinquan Zhao ◽  
Shixiao Xu ◽  
Liang Zhao ◽  
Linyong Hu ◽  
...  

Abstract Background: Tibetan wild asses are the only wild species of perissodactyls on the Qinghai-Tibetan Plateau, and appears on the International Union for Conversation of Nature (IUCN) 2012 Red List of threatened species. The gut microbiota has a great effect on the health and nutrition of the host, however, scant research is available on the characteristics of their intestinal microbiota. Therefor, understanding the gut microbita composition and function of TWAs can provide a theoretical for the situ conservation of wild animals in the future. Results: To characterize its composition and function, we analyzed the intestinal microbiota of wild asses and domestic donkeys by high-throughput sequencing of the 16s rDNA regions. No significant difference in alpha diversity was detected between these two groups. Beta diversity showed that the bacterial community structure of wild asses was acutely different from domestic donkeys. At the phylum level, the two dominant phyla of Bacteroidetes and Firmcutes in wild asses were significantly higher than that in domestic donkeys. At the genus level, Ruminococcaceae_NK4A214 , Phascolarctobacterium , Coprostanoligenes_group , Lachnospiraceae_XPB1014_group and Akkermansia in wild asses were significantly higher than domestic donkeys. Moreover, statistical comparisons showed that 40 different metabolic pathways exhibited significant differences . Among them, 29 pathways had richer concentrations in wild asses than domestic donkeys, mainly amino acid metabolism, carbohydrate metabolism, and energy metabolism. Of note, network analysis showed that wild asses harbored a relatively more complex bacterial network than domestic donkeys, possibly reflecting the specific niche adaption of gut bacterial communities through species interactions. Conclusions: Wild asses were superior to that of domestic in gut microbial community composition and function. For wild animal conservation, wild asses are more suitable to survive in wild than to be domesticated or captive. Key words: Tibetan wild asses, domestic donkeys, 16S ribosomal RNA gene, gut microbiota



2020 ◽  
Vol 11 ◽  
Author(s):  
Jingya Xing ◽  
Guiqin Liu ◽  
Xinzhuang Zhang ◽  
Dongyi Bai ◽  
Jie Yu ◽  
...  

The community of microorganisms inhabiting the gastrointestinal tract of monogastric herbivores played critical roles in the absorption of nutrients and keeping the host healthy. However, its establishment at different age groups has not been quantitatively and functionally examined. The knowledge of microbial colonization and its function in the intestinal tract of different-age donkeys is still limited. By applying the V3–V4 region of the bacterial 16S rRNA gene and functional prediction on fecal samples from different-age donkeys, we characterized the gut microbiota during the different age groups. In contrast to the adult donkeys, the gut microbiota diversity and richness of the young donkeys showed significantly less resemblance. The microbial data showed that diversity and richness increased with age, but a highly individual variation of microbial composition was observed at month 1. Principal coordinate analysis (PCoA) revealed a significant difference across five time points in the feces. The abundance of Bacteroides, Lactobacillus, and Odoribacter tended to decrease, while the proportion of Streptococcus was significantly increased with age. For functional prediction, the relative abundance of pathways had a significant difference in the feces across different age groups, for example, Terpenoids and Polyketides and Folding, Sorting, and Degradation (P &lt; 0.05 or P &lt; 0.01). The analysis of beta diversity (PCoA and LEfSe) and microbial functions predicted with PICRUSt (NSTIs) clearly divided the donkeys into foals (≤3 months old) and adults (≥7 months old). Microbial community composition and structure had distinctive features at each age group, in accordance with functional stability of the microbiota. Our findings established a framework for understanding the composition and function of the fecal microbiota to differ between young and adult donkeys.



2021 ◽  
Vol 8 ◽  
Author(s):  
Haigang Wu ◽  
Xian Wu ◽  
Li Huang ◽  
Chongmei Ruan ◽  
Jinni Liu ◽  
...  

The intestinal flora is a micro-ecosystem that is closely linked to the overall health of the host. We examined the diversity and abundance of intestinal microorganisms in mice following the administration of andrographolide, a component of the Chinese medical herb Andrographis paniculata. Administration of andrographolide produces multiple beneficial effects including anti-inflammatory, antiviral and antibacterial effects but whether it directly influences the gut microbiota is not known. This study investigated whether the oral administration of andrographolide influences the intestinal microbiota and was compared with amoxicillin treatment as a positive control and water only as a negative control. We examined 21 cecal samples and conducted a high-throughput sequencing analysis based on V3-V4 variable region of the 16S rDNA genes. We found that the diversity and abundance of mouse gut microbiota decreased in direct proportion with the amoxicillin dose whereas andrographolide administration did not affect intestinal microbial community structure. The composition of intestinal microbes following andrographolide treatment was dominated by the Firmicutes while Bacteroidetes dominated the amoxicillin treatment group compared with the negative controls. Specifically, the f__Lachnospiraceae_ Unclassified, Lachnospiraceae_ NK4A136_group and Ruminococcaceae_ UCG-014 were enriched with andrographolide administration while Bacteroides, Klebsiella and Escherichia-Shigella significantly increased in the amoxicillin test groups. Amoxicillin administration altered the microbial community composition and structure by increasing the proportion of pathogenic to beneficial bacteria whereas andrographolide administration led to increases in the proportions and abundance of beneficial bacteria. This study provides a theoretical basis for finding alternatives to antibiotics to decrease bacterial resistance and restore intestinal floral imbalances.



2019 ◽  
Author(s):  
Hongjin Liu ◽  
Xinquan Zhao ◽  
Shixiao Xu ◽  
Liang Zhao ◽  
Xueping Han ◽  
...  

Abstract Tibetan wild asses (Equus Kiang) are the only wild species of perissodactyls on the Qinghai-Tibetan Plateau, and appears on the International Union for Conversation of Nature (IUCN) 2012 Red List of threatened species. Therefor, understanding the gut microbita composition and function can provide a theoretical for the situ conservation of wild animals in the future. This study analyzed the intestinal microbiota of wild asses and domestic donkeys by high-throughput sequencing of the 16s rDNA regions. No significant difference in alpha diversity was detected between these two groups. Beta diversity showed that the bacterial community structure of wild asses was acutely different from domestic donkeys. At the phylum level, the two dominant phyla of Bacteroidetes and Firmcutes in wild asses were significantly higher than that in domestic donkeys. At the genus level, Ruminococcaceae_NK4A214, Phascolarctobacterium, Coprostanoligenes_group, Lachnospiraceae_XPB1014_group and Akkermansia in wild asses were significantly higher than domestic donkeys. Moreover, statistical comparisons showed that 40 different metabolic pathways exhibited significant differences. Among them, 29 pathways had richer concentrations in wild asses than domestic donkeys, mainly included amino acid metabolism, carbohydrate metabolism, and energy metabolism. Of note, network analysis showed that wild asses harbored a relatively more complex bacterial network than domestic donkeys, possibly reflecting the specific niche adaption of gut bacterial communities through species interactions. The overall results indicated that wild asses were superior to that of domestic in gut bacteria community composition and function, and wild asses should be more suitable to survive in wild than to be domesticated or captive.



2021 ◽  
Vol 17 ◽  
pp. 117693432199635
Author(s):  
Daoxin Liu ◽  
Pengfei Song ◽  
Jingyan Yan ◽  
Haijing Wang ◽  
Zhenyuan Cai ◽  
...  

Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor ( Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference ( P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.



Author(s):  
Xun Kang ◽  
Yanhong Wang ◽  
Siping Li ◽  
Xiaomei Sun ◽  
Xiangyang Lu ◽  
...  

The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3−V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.



2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Yinlong Cheng ◽  
Yining Li ◽  
Yonghong Xiong ◽  
Yixin Zou ◽  
Siyu Chen ◽  
...  

Abstract Purpose To investigate the effect of liver-specific knockdown of ANGPTL8 on the structure of the gut microbiota. Methods We constructed mice with liver-specific ANGPTL8 knockdown by using an adeno-associated virus serotype 8 (AAV8) system harbouring an ANGPTL8 shRNA. We analysed the structure and function of the gut microbiome through pyrosequencing and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional prediction. Results Compared with controls, ANGPTL8 shRNA reduced the Simpson index and Shannon index (p < 0.01) of the gut microbiota in mice. At the phylum level, the sh-ANGPTL8 group showed a healthier gut microbiota composition than controls (Bacteroidetes: controls 67.52%, sh-ANGPTL8 80.75%; Firmicutes: controls 10.96%, sh-ANGPTL8 8.58%; Proteobacteria: controls 9.29%, sh-ANGPTL8 0.98%; F/B ratio: controls 0.16, sh-ANGPTL8 0.11). PCoA and UPGMA analysis revealed a significant difference in microbiota composition, while KEGG analysis revealed a significant difference in microbiota function between controls and the sh-ANGPTL8 group. Conclusion Our results revealed that inhibition of ANGPTL8 signalling altered the structure of the gut microbiome, which might further affect the metabolism of mice. We have thus identified ANGPTL8 as a novel hepatogenic hormone potentially involving the liver-gut axis and regulating the structure of the gut microbiota.



Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1641
Author(s):  
Xiao-Ling Zhang ◽  
Tian-Wei Xu ◽  
Xun-Gang Wang ◽  
Yuan-Yue Geng ◽  
Hong-Jin Liu ◽  
...  

Here we aimed to explore the change in yak gut microbiota after transferring yaks from grazing grassland to a feedlot, and determine their diet adaptation period. Five yaks were transferred from winter pasture to an indoor feedlot. Fecal samples were obtained from grazing (G) and feedlot feeding yaks at day 1 (D1), day 4 (D4), day 7 (D7), day 11 (D11), and day 16 (D16). The dynamic variation of the bacterial community was analyzed using 16S rRNA gene sequencing. The results showed that the yak gut microbial community structure underwent significant changes after diet transition. At the phylum and genus levels, most bacteria changed within D1–D11; however, no significant changes were observed from D11–D16. Furthermore, we used random forest to determine the key bacteria (at class level) disturbing gut micro-ecology. The relative abundance of the top four classes (Erysipelotrichia, Gammaproteobacteria, Saccharimonadia, and Coriobacteriia) was highest on D1–D4, and then decreased and plateaued over time. Our results demonstrated that an abrupt adjustment to a diet with high nutrition could influence the gut micro-ecology, which was stabilized within 16 days, thus providing insights into diet adaptation in the yak gut.



2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Guo ◽  
Wenye Geng ◽  
Shan Chen ◽  
Li Wang ◽  
Xuli Rong ◽  
...  

The effects of ginger on gastrointestinal disorders such as ulcerative colitis have been widely investigated using experimental models; however, the mechanisms underlying its therapeutic actions are still unknown. In this study, we investigated the correlation between the therapeutic effects of ginger and the regulation of the gut microbiota. We used dextran sulfate sodium (DSS) to induce colitis and found that ginger alleviated colitis-associated pathological changes and decreased the mRNA expression levels of interleukin-6 and inducible nitric oxide synthase in mice. 16s rRNA sequencing analysis of the feces samples showed that mice with colitis had an intestinal flora imbalance with lower species diversity and richness. At the phylum level, a higher abundance of pathogenic bacteria, Proteobacteria and firmicutes, were observed; at the genus level, most samples in the model group showed an increase in Lachnospiraceae_NK4A136_group. The overall analysis illustrated an increase in the relative abundance of Lactobacillus_murinus, Lachnospiraceae_bacterium_615, and Ruminiclostridium_sp._KB18. These increased pathogenic bacteria in model mice were decreased when treated with ginger. DSS-treated mice showed a lower abundance of Muribaculaceae, and ginger corrected this disorder. The bacterial community structure of the ginger group analyzed with Alpha and Beta indices was similar to that of the control group. The results also illustrated that altered intestinal microbiomes affected physiological functions and adjusted key metabolic pathways in mice. In conclusion, this research presented that ginger reduced DSS-induced colitis severity and positively regulated the intestinal microbiome. Based on the series of data in this study, we hypothesize that ginger can improve diseases by restoring the diversity and functions of the gut microbiota.



Sign in / Sign up

Export Citation Format

Share Document