scholarly journals Improvement of Nutrient Concentration in Rice Grain by Zinc Biofortification

Author(s):  
Kamrun Nahar ◽  
M. Jahiruddin ◽  
M. Rafiqul Islam ◽  
Zannatun Nayem

The experiment was conducted in the research farm at Bangladesh Agricultural University (BAU) to investigate the nutrient biofortification ability of rice grain at different doses of zinc fertilization. In this experiment two rice varieties (BRRI dhan28 and Binadhan-16) and five doses (0, 1.5, 3.0, 4.5 and 6.0 kg ha-1) of zinc fertilization were used following split -plot design with three replications. The concentrations of N, Zn and Fe were significantly and positively influenced by the Zn treatments. The crop varieties did not differ significantly in respect of N and Fe concentrations, but the grain Zn concentration was considerably higher in BINA dhan16 than in BRRI dhan28. The grain N content as well as grain protein content increased with the rates of Zn application. Application of Zn increased the protein concentration in rice grain showing that zinc had helped protein synthesis. The grain Zn concentration increased with Zn application rates in a quadratic line which indicates that Zn concentration in rice grain was increased by Zn fertilization, but it attained a maximum value up to Zn6.0 treatment which was 12.2% increase over control.

2020 ◽  
pp. 1-6
Author(s):  
Kamrun Nahar ◽  
M. Jahiruddin ◽  
M. Rafiqul Islam ◽  
Soyema Khatun ◽  
M. Roknuzzaman ◽  
...  

The experiment was conducted in the research farm at Bangladesh Agricultural University (BAU) to investigate the zinc biofortification ability of rice grain at different doses of zinc fertilization. In this experiment two rice varieties (BRRI dhan28 and Binadhan-16) and five doses (0, 1.5, 3.0, 4.5 and 6.0 kg ha-1) of zinc fertilization were used following split-plot design with three replications. Except 1000-grain weight and plant height, all other plant characters viz., tillers hill-1, panicle length and grains panicle-1 were significantly influenced by zinc fertilization. The treatment receiving Zn at 4.5 kg ha-1 (Zn 4.5) produced the highest grain yield (7.70 t ha-1) in BRRI dhan28 which was statistically similar with the yield obtained with Zn 3.0 treatments. The zinc control treatment (Zn 0) produced the lowest grain yield in both varieties. The concentrations of N, Zn and Fe were significantly and positively influenced by the Zn treatments. The crop varieties did not differ significantly in respect of N and Fe concentrations, but the grain Zn concentration was considerably higher in BINA dhan16 than in BRRI dhan28. The grain N content as well as grain protein content linearly increased with the rates of Zn application. Thus, application of Zn at the rate of 6.0 kg ha-1 demonstrated the highest Zn fortification in both varieties but maximum zinc fortification was observed in Binadhan-16 (24.1 µg g-1) in rice grain which was 12.2% higher over control treatment.


2020 ◽  
Vol 73 (1) ◽  
Author(s):  
Shilpi Das ◽  
M. Jahiruddin ◽  
M. Rafiqul Islam ◽  
Abdullah Al Mahmud ◽  
Akbar Hossain ◽  
...  

We examined the effects of zinc (Zn) fertilization on wheat, focusing on yield and biofortification in the grains of two wheat varieties. Five Zn rates, i.e., 0, 1.5, 3.0, 4.5, and 6.0 kg ha<sup>−1</sup> applied as ZnSO<sub>4</sub>·7H<sub>2</sub>O (23% Zn), and two wheat varieties, i.e., ‘BARI Gom-25’ and ‘BARI Gom-26,’ were used in the study. All plant characteristics, except 1,000-grain weight and plant height, i.e., tillers plant<sup>−1</sup>, spikes m<sup>−2</sup>, spike length, spikelets spike<sup>−1</sup>, and grains spike<sup>−1</sup>, were significantly influenced by Zn fertilization. Treatment with 3.0 kg Zn ha<sup>−1</sup> (Zn<sub>3.0</sub>) produced the highest grain yield (3.90 t ha<sup>−1</sup>), which was statistically similar to Zn<sub>4.5</sub> and Zn<sub>6.0</sub> treatments. The control treatment (Zn<sub>0</sub>) produced the lowest grain yield (2.99 t ha<sup>−1</sup>). The concentrations of N, Zn, and Fe were significantly and positively influenced by Zn treatment. The crop varieties did not differ significantly in terms of N and Zn concentrations. However, the grain Fe concentration was remarkably higher in ‘BARI Gom-26’ than in ‘BARI Gom-25.’ The grain N and protein concentrations increased linearly with the Zn application rate. The grain Zn concentration increased with Zn application rates in a quadratic line, indicating that the concentration of Zn in wheat grain increased with Zn fertilization; however, it attained a maximum value in the Zn<sub>4.5</sub> treatment, after which it declined with higher rate of Zn application. The application of Zn at the rate of 4.5 kg ha<sup>−1</sup> resulted in the highest Zn fortification (39.7 µg g<sup>−1</sup>) in wheat grains, which was 17.1% higher than in the control treatment. The response curve showed that 4.62 kg ha<sup>−1</sup> for ‘BARI Gom-25’ and 3.94 kg ha<sup>−1</sup> for ‘BARI Gom-26’ were the optimum Zn rates for achieving higher wheat grain yield. However, 5.5 kg ha<sup>−1</sup> was the optimum Zn rate for obtaining higher Zn fortification in wheat grains.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Safrida Safrida ◽  
Nana Ariska ◽  
Yusrizal Yusrizal

This study aims to determine the response of several local rice varieties to the provision of palm oil bare ash on peatlands. This study was arranged in a Split Plot Design Split plot with 2 treatments and 4 groups, consisting of 4 local rice varieties, namely: P 1 = Cut Krusek, P 2 = Ramos Mirah, P3= Sambe and P4= Bo Sireutoh. Ameliorant factors in palm oil ash consist of: A 0 = Control, A 1 = 15 tons ha-1. The results showed that the varieties had a very significant effect on plant height at 45 HST, number of tillers per clump age 45 HST, number of productive tillers per clump, significantly affected plant age 60 HST, had no significant effect on plant height at 30 HST, number of tillers per family age 30 and 60 HST, rice grain and grain are empty. The Bo Sireutoh variety (P 4 ) has the ability to increase the rate of growth of the number of tillers per clump, the number of productive tillers per clump and the weight of rice paddy per plot. Whereas the Cut Krusek variety (P 1 ) has the ability to increase the rate of growth at the plant height level and the percentage of empty grain. The treatment of oil palm ash ameliorant on peatland is able to increase growth at plant height, rice grain percentage and percentage of empty grain, but it does not significantly affect the number of productive tillers per clum. Keywords : Palm-length ash ameliorates, Rice Varieties 


2021 ◽  
Vol 3 (6) ◽  
pp. 117-122
Author(s):  
M. Rafiqul Islam ◽  
Abida Sultana ◽  
M. Jahiruddin ◽  
Shofiqul Islam

Zinc (Zn) deficiency is widespread nutrient disorder in lowland rice growing areas in Asia, especially in Bangladesh. Intensive cropping with modern varieties causes depletion of inherent nutrient reserves in soils. The application of Zn fertilizers results in higher crop productivity and increases Zn concentration in crops. A field experiment was conducted to evaluate the effect of Zn application on growth, yield, and grain-Zn concentration in eight varieties of rice. The experiment was laid out in a split plot design with a distribution of Zn rates (0 kg ha-1 and 3 kg ha-1 from ZnO) to the main plots and rice varieties (BRRI dhan49, BRRI dhan52, BRRI dhan56, BRRI dhan57, Kalizira, Biroin, Gainja and Khirshapath) to the sub-plots. Zinc application improved effective tillers hill-1, grains panicle-1 and 1000-grain weight which impacted the grain yield of rice. Among the eight rice varieties, a significant increase of grain yield was recorded in BRRI dhan49, BRRI dhan52, BRRI dhan56 and BRRI dhan57 due to application of Zn. Zinc concentration of grain significantly increased in all rice varieties except Biroin. The highest grain-Zn concentration (19.1 mg kg-1) was noted in BRRI dhan57 with 3 kg ha-1 Zn and the lowest value (11.3 mg kg-1) was observed in BRRI dhan52 without Zn application. The highest percent increase of grain Zn concentration over control was obtained in high yielding rice variety BRRI dhan49 and the lowest Zn concentration was found in local rice variety Biroin.


Human zinc (Zn) deficiency is a worldwide problem, especially in developing countries due to the prevalence of cereals in the diet. Among different alleviation strategies, genetic Zn biofortification is considered a sustainable approach. However, it may depend on Zn availability from soils. We grew Zincol-16 (genetically-Zn-biofortified wheat) and Faisalabad-08 (widely grown standard wheat) in pots with (8 mg kg−1) or without Zn application. The cultivars were grown in a low-Zn calcareous soil. The grain yield of both cultivars was significantly (P≤0.05) increased with that without Zn application. As compared to Faisalabad-08, Zincol-16 had 23 and 41% more grain Zn concentration respectively at control and applied rate of Zn. Faisalabad-08 accumulated about 18% more grain Zn concentration with Zn than Zincol-16 without Zn application. A near target level of grain Zn concentration (36 mg kg−1) was achieved in Zincol-16 only with Zn fertilisation. Over all, the findings clearly signify the importance of agronomic Zn biofortification of genetically Zn-biofortified wheat grown on a low-Zn calcareous soil.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2019
Author(s):  
Sukanta K. Sarangi ◽  
Sudhanshu Singh ◽  
Ashish K. Srivastava ◽  
Madhu Choudhary ◽  
Uttam K. Mandal ◽  
...  

This study was conducted over 3 years in a salt-affected coastal rainfed lowland ecosystem. Farmers most commonly grow tall rice varieties in the wet season to cope with flash and/or stagnant floods, leading to large amounts of rice residue production. Most of the land remains fallow during the dry season because of increased salinity and scarcity of freshwater for irrigation. The study aims to provide options for increasing cropping intensity through management of crop residues (CR) and soil salinity, conservation of soil moisture, and reduction in production cost. The rice–maize rotation was assessed with rice as the main plot as (1) puddled transplanted rice (PTR) with CR of both rice and maize removed, (2) PTR and 40% CR of both crops retained, (3) dry direct-seeded rice (DSR) with CR of both crops removed, and (4) DSR with 40% CR of both crops retained. Maize in the dry season was supplied with different N levels as sub-plots—control (0 kg N ha−1), 80, 120, and 160 kg N ha−1. DSR, when combined with CR retention (DSR + R), reduced soil salinity. The increase in rice grain yield with CR retention (observed in second and third years) and crop establishment (higher in DSR versus PTR in the third year) was 16 and 24%, respectively. The cost of production increased by 17% (USD 605 ha−1) in PTR compared with DSR (USD 518 ha−1). CR retention reduced irrigation water requirement by 37% and N requirement by 40 kg ha−1 for hybrid maize. When CR was removed (−R), the N requirement for hybrid maize increased to 160 kg N ha−1 compared to when it was partially (40%) retained, where the requirement was 120 kg ha−1 with similar yields. Available N was highest under DSR + R (314 kg ha−1) and lowest under PTR − R (169 kg ha−1), and it also increased with increasing N application up to 120 kg ha−1 (+R) and 160 kg ha−1 (−R). The results of the study hold promise for increasing cropping intensity and farmers’ incomes, with broader implications for increasing productivity on about 2.95 million hectares currently under a rice–fallow system in eastern India, and in coastal areas affected by similar conditions in South and Southeast Asia.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 746
Author(s):  
Chae-Min Han ◽  
Jong-Hee Shin ◽  
Jung-Bae Kwon ◽  
Jong-Soo Kim ◽  
Jong-Gun Won ◽  
...  

Pre-harvest sprouting (PHS) severely reduces rice grain yield, significantly affects grain quality, and leads to substantial economic loss. In this study, we aimed to characterize the physicochemical properties and processing quality of the Garumi 2 flour rice variety under PHS conditions and compare them with those of the Seolgaeng, Hangaru, Shingil, and Ilpum rice varieties and the Keumkang wheat variety. Analysis of the molecular structure of starch revealed uniform starch granules, increased proportions of short-chain amylopectin in DP 6–12 (51.0–55.3%), and enhanced crystallinity (30.7–35.7%) in rice varieties for flour compared with the Ilpum cooking rice variety. PHS significantly altered the starch structure and gelatinization properties of Garumi 2. It also caused surface pitting and roughness in Garumi 2 starch granules and decreased their crystallinity. Collectively, the findings of this study provide important novel insights into the effects of PHS on the physicochemical properties of Garumi 2 floury rice for flour.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1359
Author(s):  
Javaria Tabassum ◽  
Shakeel Ahmad ◽  
Babar Hussain ◽  
Amos Musyoki Mawia ◽  
Aqib Zeb ◽  
...  

Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. Briefly, in this review, we discuss advancements made in CRISPR systems, base and prime editors, and their applications, to improve rice grain yield, abiotic stress tolerance, grain quality, disease and herbicide resistance, in addition to the regulatory aspects and risks associated with genetically modified rice plants. We also focus on the limitations and future prospects of GETs to improve rice grain quality.


Author(s):  
T.B. Kumeyko ◽  
◽  
N.G. Tumanian

The article studies the technological grain quality traits of rice varieties of Russian breeding Rapan, Flagman, Olimp, Azov, Patriot in the yield of 2017-2019 grown in the Abinsky district, Krasnodar region. Purpose of the research was to study the effect of doses of nitrogen fertilizers on the technological grain quality traits of rice varieties with a low amylose content. Rice varieties were evaluated by mass of 1000 absolutely dry grains, filminess, vitreousity, and fracture when grown with different doses of nitrogen fertilizers N60, N120. With an increase in the dose of nitrogen to N120, "the mass of 1000 absolutely dry grains", "vitreousity", "fracture" remained unchanged or the "filminess" changed. The pattern of changes in grain quality traits may indicate an intensive type of varieties Rapan and Olimp.


Sign in / Sign up

Export Citation Format

Share Document