scholarly journals Impact of Open Crop Residue Burning and Alternate Options for Mitigation: A Review

Author(s):  
Sanjeev Kumar Gupta ◽  
Anshuman Kohli ◽  
S. Roy Choudhury ◽  
S. K. Dutta ◽  
S. K. Pathak ◽  
...  

Burning of crop residues in field include unavailability of labour, high cost in residue removing process and use of combined in rice-wheat cropping system especially in the Indo-Gangetic plains (IGP). Primary crop types whose residues are typically burned include rice, wheat, maize, millet, sugarcane, jute, rapeseed-mustard and groundnut. Farmers in northwest India dispose a large part of rice straw by burning in situ. The ‘rice-wheat cropping system’ is the dominant cropping system in South Asia [1]. This system involves growing rice and wheat in rotation throughout the year where rice and wheat is either grown in the same plot in the same year or in different plots in the same year or in the same plot in different years. Uttar Pradesh, Punjab, Haryana, Bihar, Madhya Pradesh and Himachal Pradesh have the largest areas under this system among the Indian states. Approximately 500-550 Mt of crop residues are produced per year in the country. With a production of 93.9 million tons (Mt) of wheat, 104.6 Mt of rice, 21.6 Mt of maize, 20.7 Mt of millets, 357.7 Mt of sugarcane, 8.1 Mt of fibre crops (jute, mesta, cotton), 17.2 Mt of pulses and 30.0 Mt of oilseeds crops, in the year 2011-12. Emission of greenhouse gases (GHGs) such as carbon dioxide, methane and nitrous oxide causing global warming, loss of plant nutrients such as N, P, K and S, adverse impacts on soil properties and  wastage of valuable C and energy rich residues. Black carbon emissions are the second largest contributors to current global warming, after carbon dioxide emissions [2]. Using IPCC emission coefficients, the CH4 released from this source was found to be about 167 Gg [3]. Agricultural crop residues are burnt during the months of October and November every year in the Indo-Gangetic Plains (IGPs) in huge quantities which has a significant impact on greenhouse gas emissions and aerosol loading [4]. In the IGP region of India, 12 million hectares is accounted for rice-wheat crop rotation and harvesting of these crops with combine harvesters is very popular with the farmers of Punjab, Haryana and western Uttar Pradesh [4]. Crop residue management is one of the best options for maintaining the ecological sustainability of farms. There are several options which can be practiced such as composting, generation of energy, production of biofuel, mulching, baling, biochar production and recycling in soil to manage the residues in a productive manner. Conservation agriculture (CA) offers a good promise in using these residues for improving soil health, increasing productivity, reducing pollution and enhancing sustainability and resilience of agriculture.

2005 ◽  
Vol 56 (11) ◽  
pp. 1137 ◽  
Author(s):  
W. K. Anderson ◽  
M. A. Hamza ◽  
D. L. Sharma ◽  
M. F. D'Antuono ◽  
F. C. Hoyle ◽  
...  

Modern bread wheat (Triticum aestivum) has been well adapted for survival and production in water-limited environments since it was first domesticated in the Mediterranean basin at least 8000 years ago. Adaptation to various environments has been assisted through selection and cross-breeding for traits that contribute to high and stable yield since that time. Improvements in crop management aimed at improving yield and grain quality probably developed more slowly but the rate of change has accelerated in recent decades. Many studies have shown that the contribution to increased yield from improved management has been about double that from breeding. Both processes have proceeded in parallel, although possibly at different rates in some periods, and positive interactions between breeding and management have been responsible for greater improvements than by either process alone. In southern Australia, management of the wheat crop has focused on improvement of yield and grain quality over the last century. Adaptation has come to be equated with profitability and, recently, with long-term economic and biological viability of the production system. Early emphases on water conservation through the use of bare fallow, crop nutrition through the use of fertilisers, crop rotation with legumes, and mechanisation, have been replaced by, or supplemented with, extensive use of herbicides for weed management, reduced tillage, earlier sowing, retention of crop residues, and the use of ‘break’ crops, largely for management of root diseases. Yields from rainfed wheat crops in Western Australia have doubled since the late 1980s and water-use efficiency has also doubled. The percentage of the crop in Western Australia that qualifies for premium payments for quality has increased 3–4 fold since 1990. Both these trends have been underpinned by the gradual elimination or management of the factors that have been identified as limiting grain yield, grain quality, or long-term viability of the cropping system.


Author(s):  
Raghubar Sahu ◽  
S. K. Mandal ◽  
K. Sharda ◽  
D. Kumar ◽  
Jubuli Sahu ◽  
...  

A field experiment was conducted during Kharif and rabi seasons of 2015 and 2016 at farmer’s field of Banka District as an On Farm Trial to study the crop residues management with different crop establishment methods in rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system. Treatment comprised two levels of crop residue management ie. residue removal and residue retention (33%) and three levels of crop establishment methods ie. (a) conventional puddled transplanted rice fb conventional-till wheat (PTR-CTW), two times ploughing with cultivator followed by two times puddling and one planking was done before the manual transplanting of 21 days old seedling at 20 cm spacing from row to row. After rice harvesting, wheat was sown by broadcasting in conventional tillage plots with two times harrowing with cultivator followed by one planking; (b) unpuddled transplanted rice fb zero-till wheat (UPTR-ZTW): two times ploughing with cultivator followed by planking, after that water is submerged for transplanting and wet tillage was avoided. 21 days old rice seedlings were transplanted at a spacing of 20 x 15 cm. Wheat crop was sown under ZT using zero tillage machines; (c) zero-till direct-seeded rice fb zero-till wheat (ZTDSR-ZTW): direct-seeding of rice was done using zero-till seed-cum-fertilizer drill in ZT-flat plots at 20 cm row spacing. Wheat crop was sown in zero tillage using zero till machine. Rice variety (Rajendra Sweta) was sown directly by zero till in ZTDSR-ZT plots in the first fortnight of June. On the same date, rice seedlings for transplanting were raised in nursery by ‘Wet bed method’. Experiment was conducted in a split plot design which is replicated by thrice. Grain/panicle or spike, panicle or ear length and effective tillers/m2 recorded more in residue retention treatment and it was registered significantly superior with residue removal treatment under crop residue management in rice and wheat crop during both the years of experiment. Amongst crop establishment method, ZTDSR-ZTW was recorded more Grain/panicle or spike, panicle or ear length and effective tillers/m2 and it was significantly superior with UPTR-ZTW and PTR-CTW treatments under crop establishment methods in rice and wheat crop during both the years of experiment. Residues retention (33%) significantly improved the grain yield of both the component crops. For rice crop, 8.2–10.0% higher grain yield was realized with retention of crop residues. Grain and straw yield of rice were registered more in ZTDSR-ZTW (3.86-3.99 t/ha) & (5.56-5.75 t/ha) closely followed by UPTR-ZTW (4.38-4.45 t/ha). Concerning the data of residue management on economics revealed that the residue retention was recorded more gross return, net return as well as B: C ratio followed by residue removal treatment in both years of experimentation for rice and wheat crop and ZTDSR-ZTW was recorded more gross return, net return as well as B: C ratio followed by UPTR-ZTW and PTR-CTW treatments under crop establishment methods in rice and wheat crop during both the years of experiment.


2013 ◽  
Vol 27 (1) ◽  
pp. 241-254 ◽  
Author(s):  
Virender Kumar ◽  
Samar Singh ◽  
Rajender S. Chhokar ◽  
Ram K. Malik ◽  
Daniel C. Brainard ◽  
...  

In the rice–wheat (RW) systems of the Indo-Gangetic Plains of South Asia, conservation tillage practices, including zero-tillage (ZT), are being promoted to address emerging problems such as (1) shortages of labor and water, (2) declining factor productivity, (3) deterioration of soil health, and (4) climate change. Despite multiple benefits of ZT, weed control remains a major challenge to adoption, resulting in more dependence on herbicides for weed control. Alternative management strategies are needed to reduce dependence on herbicides and minimize risks associated with their overuse, including evolution of herbicide resistance. The objectives of this review are to (1) highlight and synthesize research efforts in nonchemical weed management in ZT RW systems and (2) identify future weed ecology and management research needs to facilitate successful adoption of these systems. In ZT RW systems, crop residue can play a central role in suppressing weeds through mulch effects on emergence and seed predation. In ZT rice, wheat residue mulch (5 t ha−1) reduced weed density by 22 to 76% and promoted predation of RW weeds, including littleseed canarygrass and barnyardgrass seeds. For ZT wheat, rice residue mulch (6 to 10 t ha−1) in combination with early sowing reduced emergence of littleseed canarygrass by over 80%. Other promising nonchemical approaches that can be useful in suppressing weeds in ZT RW systems include use of certified seeds, weed-competitive cultivars, stale seedbed practices, living mulches (e.g., sesbania coculture), and water and nutrient management practices that shift weed–crop competition in favor of the crop. However, more research on emergence characteristics and mulching effects of different crop residues on key weeds under ZT, cover cropping, and breeding crops for weed suppression will strengthen nonchemical weed management programs. Efforts are needed to integrate multiple tactics and to evaluate long-term effects of nonchemical weed management practices on RW cropping system sustainability.


Author(s):  
Jubuli Sahu ◽  
Muneswar Prasad ◽  
Raghubar Sahu ◽  
Dharmendra Kumar ◽  
Sanjay Kumar Mandal ◽  
...  

An effort has been made to study the effect of climate change on crop residues and need of crop residue management in present environmental condition. Crop residue management as an important practiced in the rice–wheat cropping system. In present condition, cropping season is shifted according to changing rainfall pattern. In case of wheat and rice-based cropping system, there is a chance of crop loss due to occurrence of rainfall at harvesting stage so, to cope with that situation combine harvesters become more popularize among farmers because of effective harvesting in less time, less effort and minimum labour cost. But it lefts a huge amount of loose straw in their field and farmers face difficulties in the disposal of huge straw in the field in short time has compelled to go for crop residue burning to save time as well labour. Farmers can use that residues in vermi-composting, can be fed to animals after urea treatment etc. without burning. In recent year 30-40% maize crop have been damaged due to hailstorm at its grain filling stage so these residues can be used in making silage. Removal of straw or stover can result in significant loss of soil organic carbon (SOC). If they are used as bedding for livestock, then much of the carbon may be returned to the soil as manure (Lal et al., 1998). When crop-residue is incorporated into soil, the soil’s physical properties and its water-holding capacity are enhanced. Unlike in earlier conservation farming systems wherein retained stubble was mulched and slashed, now it is mostly burned by the farmers. Vermicomposting, waste decomposer, Green Manuring, use of zero tillage machine, silage making and urea treated straw are the best option to crop residue management. The study aimed to examine the present status of crop residue management of major crops and its impact on farmers’ livelihood covering eleven blocks in Banka district of Bihar.


2019 ◽  
Vol 11 (11) ◽  
pp. 3032
Author(s):  
Yamei Wang ◽  
Shuhe Zhao ◽  
Wenting Cai ◽  
Joon Heo ◽  
Fanchen Peng

Crop residues can retain soil moisture and increase soil organic matter. Crop residue cover is also a hot issue in agricultural remote sensing. Crop residue cover can be estimated linearly with cellulose absorption index (CAI), while moisture of crop residues and soil would reduce the accuracy of crop residue cover estimation. Crop residue and soil were used as materials to carry out the laboratory experiment to reveal the impact of moisture on crop residue cover estimation and eliminate said impact. This paper discovered a sensitive band, R2005, which can invert water content of materials to eliminate moisture effect and improve estimation accuracy of crop residue cover. In terms of inverting water content, compared with two ratio water indices proposed in 2016 (R1.6/R1.5, R1.6/R2.0), using R2005 can increase R2 from 0.828 to 0.935 and decline root-mean-square error (RMSE) from 0.12 to 0.07. At the point of results validation, R2 is 0.958 and RMSE is 0.06, indicating R2005 has a high accuracy. Another advantage of R2005 is that it is more suitable to promote to actual production because of simple and efficient band calculation.


2014 ◽  
Vol 53 (3) ◽  
pp. 275-292 ◽  
Author(s):  
Tanvir Ahmed ◽  
Bashir Ahmad

This paper identified the factors influencing the rice crop residue burning decision of the farmers and the potential of the burnt residue to generate electricity. For this study, data were collected from 400 farmers in the rice-wheat cropping system. Effects of different variables on the burning decision of rice residue are investigated through logit model. A number of factors had significant effects on the burning decision of crop residue. These included farming experience of the farmer, Rajput caste, farm size, owner operated farm, owner-cum-tenants operated farm, silty loam soil type, livestock strength, total cost associated with the handling of residue and preparation of wheat field after rice, availability of farm machinery for incorporation, use of residue as feed for animals, use of residue as fuel, intention of the respondent to reduce turnaround time between harvesting of rice and sowing of wheat, convenience in use of farm machinery after burning of residue and the geographic location of farm. The overall quantity of rice straw burnt is estimated to be 1704.91 thousand tonnes in the rice-wheat cropping areas with a potential to generate electric power of 162.51 MW. This power generation from crop residues would be a source of income for the farmers along with generation of additional employment opportunities and economic activities on sustainable basis. In order to minimise the cost of haulage of rice straw, installation of decentralised power plants at village level would be a good option. Further, use of rice crop residue as an energy source can help in reducing foreign exchange requirements for import of furnace oil. JEL Classification: O44, Q12, Q16, Q42, Q48 Keywords: Bioenergy, Crop Residue, Electricity, Energy, Growth, Rice


Author(s):  
Jhanvi Saini ◽  
Rajan Bhatt

Global warming - a new global challenge in front of agricultural scientists, affecting almost all the climatic parameters involving air temperature and rainfall intensity and distributions. Elevated levels of greenhouse gases (GHGs) viz. carbon dioxide, methane, nitrous oxide etc. are only because of faulty agricultural practices viz. intensive tilling, burning of crop residues, which further adversely affecting both land and water productivity. As per one projection that global surface air temperatures may increase by 4.0–5.8°C in upcoming few decades which offset the likely benefits of increasing atmospheric concentrations of carbon dioxide on crop plants. Over space and time, new environmental conditions created which might be responsible for frequent droughts, higher temperatures, flooding, salinity, increased carbon dioxide levels, rise in sea-level, irregular rainfall patterns and shifting of pest dynamics etc. Therefore, global warming cycle needs to break down through forestation, using crop residues on soil as mulch or in soils as biochar instead of burning, and adopting certain agricultural practices or developing new plant cultivars which response to CO2 under higher temperature conditions etc which helps to reduces rather mitigate the adverse effects of the global warming. Further, changes in diets, minimum tillage operations and reductions in food wastage will also serve the purpose. The present review highlighted the crucial reasons for global warming, its impacts on agriculture and finally on mitigation strategies, which helps to improve the agricultural productivity and finally livelihoods of the farmers.


Author(s):  
Rama Kant Singh ◽  
Girijesh Kumar Sharma ◽  
Pankaj Kumar ◽  
S. K. Singh ◽  
Reeta Singh

A field experiment was carried out at Krishi Vigyan Kendra, Katihar, Bihar in jurisdiction of Bihar Agricultural University Sabour, Bhagalpur during 2014 to 2018 with the objective to find out suitable crop residue management option under rice- wheat cropping system in Inceptisols of Seemanchal area of Bihar. The results after four years clearly indicates that the crop residue management practices involving  incorporation of residues improved favorably and significantly the soil properties such as bulk density, infiltration rate, mean weight diameter, aggregate stability, electrical conductivity, organic carbon, available nitrogen, phosphorus and potassium, bacterial and fungal population, enzyme dehydrogenase and phosphatase activity in the soil and increased the grain yields of rice and wheat crop in the system over removal or burning of crop residue practices. Due to increased availability of readily decomposable organic matter in the form of crop residue and freshly incorporated green manure, the microbial population increased dramatically when crop residues are incorporated in the soil which might be responsible for increased enzyme phosphatase and dehydrogenase activity, decrease in bulk density, increase in granulation and aggregation and thus infiltration rate. The incorporation of crop residues with or without green manuring found promising for the environmental friendly and effective utilization of the crop residues under prevailing rice wheat system in this area.


Sign in / Sign up

Export Citation Format

Share Document