scholarly journals Compounds from Vernonia arborea Buch.-Ham. Inhibit Microbes that Impair Wound Healing

Author(s):  
Lalitha Vaidyanathan ◽  
T. Sivaswamy Lokeswari

Aims: To identify the antimicrobial potency of the leaf fractions of Vernonia arborea against selected wound microbes viz., Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Stenotrophomonas maltophilia. Background: Wound healing is often delayed due to the presence of polymicrobial load, that have to be abolished to facilitate the healing process. A major class of antimicrobial phytocompound reported to occur in Vernonia arborea species include sesquiterpenes. Reports on the wound healing potency of V. arborea in wound models of Wistar rats however did not report antimicrobial activity of the aqueous or methanolic extracts. Methodology: The column fractions of the hexane leaf extract were tested against the selected strains by agar well diffusion assay and the zone of inhibition confirmed with TLC bioautography at specific Rf. The minimum inhibitory concentration (MIC) of the bioactive fractions was identified using resazurin microtiter assay (REMA) and the minimum bactericidal concentration (MBC) was determined. HPTLC quantification was also performed. Results: Out of the 30 pooled fractions, six showed antimicrobial potency against all the five tested wound microbes. The minimum inhibitory concentrations of these fractions were determined, ranging from 15.62 µg/mL to 500 µg/mL for the different microbes. Quantitative High-Performance Thin Layer Chromatography (HPTLC) revealed two compounds (a and b) in the bioactive fraction10 with yields of 633 mg (63%) and 97 mg (9.7%) per gram of the extract. Conclusion: The findings suggest the potential use of the bioactive compound in chronic infectious wound management therapy.

2017 ◽  
Vol 12 (3) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Katarzyna Sułkowska-Ziaja ◽  
Anna Maślanka ◽  
Agnieszka Szewczyk ◽  
Bożena Muszyńska

The content of two groups of compounds with biological activity (non-hallucinogenic indole compounds and free phenolic acids) were analyzed in extracts of fruiting bodies of four species of Phellinus: P. igniarius, P. pini, P. pomaceus and P. robustus. The presence of indole compounds in methanolic extracts was analyzed by high-performance liquid chromatography and thin-layer chromatography coupled with densitometric detection. Three metabolites (serotonin, tryptamine, and L-tryptophan) were identified. The contents of individual indole compounds ranged from 1.70 (tryptamine in P. robustus) to 8.32 mg x 100 g1 dry weight (L-tryptophan in P. robustus). Four free phenolic acids were detected in methanolic extracts by the HPLC method. The total content ranged from 9.9 mg x 100 g1 DW (P. igniarius) to 32.5 mg x 100 g1 DW (P. robustus).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 961
Author(s):  
Sibusiso Alven ◽  
Vuyolwethu Khwaza ◽  
Opeoluwa O. Oyedeji ◽  
Blessing A. Aderibigbe

The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.


Author(s):  
Francesca Rossi ◽  
Giada Magni ◽  
Francesca Tatini ◽  
Martina Banchelli ◽  
Federica Cherchi ◽  
...  

In recent years, photobiomodulation (PBM) has been recognized as a physical therapy in wound management. Despite several published research papers, the mechanism underlying photobiomodulation is still not completely understood. The investigation about application of blue light to improve wound healing is a relatively new research area. Tests in selected patients evidenced a stimulation of the healing process in superficial and chronic wounds treated with a blue LED light emitting at 420 nm; a study in animal model pointed out a faster healing process in superficial wound, with an important role of fibroblasts and myofibroblasts. Here we present a study aiming at evidencing the effects of blue light on the proliferation and metabolism in fibroblasts and keratinocytes. Different light doses were used to treat the cells, evidencing inhibitory and stimulatory effects. Electrophysiology was used to investigate the effects on membrane currents, while Raman spectroscopy revealed the mitochondrial Cytochrome C (Cyt C) oxidase dependence on blue light irradiation. In conclusion, we observed that the blue LED light can be used to modulate the activity of human fibroblasts, and the effects in wound healing are particularly evident when studying the fibroblasts and keratinocytes co-cultures.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Atefe Ghafurian Nasab ◽  
Sayed Ali Mortazavi ◽  
Farideh Tabatabaei Yazdi ◽  
Mahboobe Sarabi Jamab

In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) ( P < 0.05 ). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.


Author(s):  
RIDHI JOSHI ◽  
RISHIKESH MEENA ◽  
PREETI MISHRA ◽  
VIDYA PATNI

Objective: A normal-phase high-performance thin-layer chromatography (HPTLC) method has been developed and validated for estimation and quantitation of beta-sitosterol from the methanolic fraction of different plant parts of two medicinally important plants viz. Merremia aegyptia and Merremia dissecta. These plants have been reported to possess antimicrobial, antioxidant, and anti-inflammatory activities. Methods: Chromatographic separation of beta-sitosterol from the methanolic extracts of plant parts of M. aegyptia and M. dissecta was performed on TLC aluminum plates pre-coated with silica gel 60F254 using a suitable mobile phase. The densitometric scanning was done after derivatization at ????-580 nm for ????-sitosterol. Result: Only M. dissecta leaf sample was reported to contain ????-sitosterol (4.6 ng/μl), whereas other samples such as seed, stem, and callus extracts of M. aegyptia and M. dissecta did not showed its presence. Conclusion: The developed HPTLC method is simple, rapid, and precise and can be used for routine analysis and quantification of ????-sitosterol and other useful plant bioactives that are phytopharmaceutically important.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 937-948
Author(s):  
Tanaji D Nandgude ◽  
Syed Nateque Naser

A wound is damage to the typical anatomic structure. Wound healing is an immediate therapeutic response to injury. It is a creation of the combined response of some cell types towards injury. Wound healing takes place by a sequence of molecular events which cooperate to fix tissue integrity and cell work. In typical healthy individual under ordinary conditions, these physiological events take place smoothly. Though sometimes, these molecular events are arrested, this brings about in struggle to heal. There is an assortment of approaches for the way toward managing and controlling both acute injuries (acute wounds) and ceaseless non-mending wounds (chronic non-healing wounds). The principal objective of these two cases is to achieve better-wound healing. Ideal formulations of wound healing should not only enhance the healing process but also reduce pain, infection and loss of electrolytes, proteins and liquids from the injury. A broad scope of items typically introduced with target various parts of the wound healing process depends on numerous types of wounds and novel polymers utilised for the conveyance of medications to both acute and ceaseless injuries. These include alginate, hydrocolloids, hydrofibers, polyurethane, and hydrogels. This article gives particular importance to different novel approaches in the management of wound healing. This review draws out the data and hopes to provide understanding into traditional, current and imminent techniques and methods for wound management.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
E. Hunter ◽  
M. Stander ◽  
J. Kossmann ◽  
S. Chakraborty ◽  
S. Prince ◽  
...  

Abstract Objective Current global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to the occurrence of phytocannabinoids (pCBs) which have shown promise in health-promotion and disease prevention. However, the occurrence of pCBs in other plant species are often overlooked and rarely studied. Leonotis leonurus (L.) R. Br. is endemic to South Africa with a rich history of use in TM practices amongst indigenous people and, has been recorded to induce mild psychoactive effects akin to Cannabis. While the leaves have been well-reported to contain therapeutic phytochemicals, little information exists on the flowers. Consequently, as part of a larger research venture, we targeted the flowers of L. leonurus for the identification of potential pCB or pCB-like compounds. Results Flower extracts were separated and analyzed using high performance thin layer chromatography (HPTLC). A single pCB candidate was isolated from HPTLC plates and, using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), we could successfully group this compound as a fatty amide and tentatively identified as 7,10,13,16-Docosatetraenoylethanolamine (adrenoyl-EA), a known bioactive compound.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Sandra Aparecida Lima de Moura ◽  
Giuseppina Negri ◽  
Antônio Salatino ◽  
Luiza Dias da Cunha Lima ◽  
Luana Pereira Antunes Dourado ◽  
...  

Propolis is a chemically complex resinous bee product which has gained worldwide popularity as a means to improve health condition and prevent diseases. The main constituents of an aqueous extract of a sample of green propolis from Southeast Brazil were shown by high performance liquid chromatography/mass spectroscopy/mass spectroscopy to be mono- and di-O-caffeoylquinic acids; phenylpropanoids known as important constituents of alcohol extracts of green propolis, such as artepillin C and drupanin were also detected in low amounts in the aqueous extract. The anti-inflammatory activity of this extract was evaluated by determination of wound healing parameters. Female Swiss mice were implanted subcutaneously with polyesther-polyurethane sponge discs to induce wound healing responses, and administered orally with green propolis (500 mg kg−1). At 4, 7 and 14 days post-implantation, the fibrovascular stroma and deposition of extracellular matrix were evaluated by histopathologic and morphometric analyses. In the propolis-treated group at Days 4 and 7 the inflammatory process in the sponge was reduced in comparison with control. A progressive increase in cell influx and collagen deposition was observed in control and propolis-treated groups during the whole period. However, these effects were attenuated in the propolis-treated group at Days 4 and 7, indicating that key factors of the wound healing process are modulated by propolis constituents.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4368
Author(s):  
Zintle Mbese ◽  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw3963 ◽  
Author(s):  
S. O. Blacklow ◽  
J. Li ◽  
B. R. Freedman ◽  
M. Zeidi ◽  
C. Chen ◽  
...  

Inspired by embryonic wound closure, we present mechanically active dressings to accelerate wound healing. Conventional dressings passively aid healing by maintaining moisture at wound sites. Recent developments have focused on drug and cell delivery to drive a healing process, but these methods are often complicated by drug side effects, sophisticated fabrication, and high cost. Here, we present novel active adhesive dressings consisting of thermoresponsive tough adhesive hydrogels that combine high stretchability, toughness, tissue adhesion, and antimicrobial function. They adhere strongly to the skin and actively contract wounds, in response to exposure to the skin temperature. In vitro and in vivo studies demonstrate their efficacy in accelerating and supporting skin wound healing. Finite element models validate and refine the wound contraction process enabled by these active adhesive dressings. This mechanobiological approach opens new avenues for wound management and may find broad utility in applications ranging from regenerative medicine to soft robotics.


Sign in / Sign up

Export Citation Format

Share Document