scholarly journals Phenotypic Detection of Extended Spectrum Beta-lactamase Resistance of Escherichia coli from Patients Attending Selected Healthcare Facilities in Nasarawa State, Nigeria

Author(s):  
R. H. Abimiku ◽  
Y. B, Ngwai ◽  
I. H. Nkene ◽  
B. E. Bassey ◽  
P. A. Tsaku ◽  
...  

Aims: This study investigated the phenotypic detection of extended spectrum beta-lactamase resistance of diarrheagenic E. coli isolated from diarrheic patients attending some major health facilities in Nasarawa State, Nigeria. Place and Duration of Study: Department of Microbiology, Nasarawa State University, P.M.B 1022, Keffi, Nasarawa State, Nigeria; between December, 2017 to March, 2019. Methodology: A total of 207 confirmed E. coli isolates from loose stool samples of patients with suspected cases of diarrhea (69 from Federal Medical Centre Keffi [MCK] 69 from General Hospital Akwanga [GHA] and 69 from Dalhatu Araf Specialist Hospital Lafia [DASHL]) were included in this study. Results: E. coli was isolated and identified using standard microbiological methods. The antibiotic susceptibility testing for the isolates was carried out and interpreted in accordance with Clinical and Laboratory Standards Institute protocol. Phenotypic detection of ESBL production in isolates resistant to ciprofloxacin, cefotaxime and ceftazidime) was carried out using double disc synergy test. The occurrence of E. coli was 100% in all the hospitals. Age groups 0-5 and 6-10 years have the highest occurrence than age group 35 – >45 years. Isolates from DASHL were more resistant to amoxicillin/clavulanic acid (86.9%), Streptomycin (75.0%) and sulphamethoxazole/trimethoprim (68.1%), isolates from FMCK were more resistant to amoxicillin/clavulanic acid (84.1%), sulphamethoxazole/trimethoprim (69.6%), isolates from GHA were more resistant to amoxicillin/clavulanic acid (85.5%) and sulphamethoxazole/trimethoprim (73.0%). Multiple antibiotic resistance (MAR) was observed with the order of occurrence: FMCK (98.6%) > DASHL (92.8%) > GHA (89.9%). The most common MAR index of 0.2 in DASHL was 0.4 (20.3%); FMCK was 0.4 (15.9%) and GHA was 0.3 (17.4%). The order of occurrence of classes of antibiotic resistance in E. coli isolates in DASHL was MDR (84.0%) ˃ XDR(7.2%) > PDR and NMDR (4.3%); in FMCK was MDR (91.3%) ˃ XDR(4.3%) ˃ NMDR (2.9%) and PDR(1.4%); and in GHA was MDR (88.8%) ˃ NMDR(5.8%) > XDR and PDR(2.9%). Detection rate of ESBL was 53.6% (30/207), distributed in relation to the location as DASHL (60.0%), FMCK (50.0%) and GHA (52.6%). Conclusion: Most of the isolates from the study locations were antibiotic resistance. Further studies on molecular detection of ESBL, diversity and characterization of the E. coli into pathotypes are ongoing.

Author(s):  
S. C. Tama ◽  
Y. B. Ngwai ◽  
I. H. Nkene ◽  
R. H. Abimiku

Objectives: The present study reports extended-spectrum beta-lactamase (ESBL) production in E. coli isolates from poultry droppings from selected poultry farms in Keffi, Nigeria. Methods: Seventy-five (75) samples of poultry droppings were collected, and E. coli was isolated using standard microbiological methods. Antibiotic susceptibility testing and minimum inhibitory concentrations were evaluated as described by the Clinical and Laboratory Standards Institute (CLSI). Phenotypic confirmation of ESBL production by the isolates was carried out using double disc synergy test.  Molecular detection of ESBL genes was carried out using Polymerase Chain Reaction (PCR) method. Results: All (100%) samples had E. coli. Antimicrobial resistance in the isolates were as follows: imipenem (12.0%), gentamicin (20.0%), cefoxitin (37.3%), cefotaxime (41.3%), ceftazidime (44.0%), ciprofloxacin (48.0%), amoxicillin/clavulanic acid (58.7%), streptomycin (92.0%),  sulphamethoxazole/trimethoprim (92.0%) and ampicillin (98.7%). Joint resistance to ampicillin, sulphamethoxazole/trimethoprim-streptomycin was the commonest resistance phenotype at 10.6%. Multiple antibiotic resistance (MAR) was observed in 97.3% (73/75) of the isolates; and the most common MAR indices were 0.7 (21.9%), 0.5 (17.8%), 0.4 (16.4%), 0.8 (11.1%) and 0.3 (10.9%). Twenty three (46.9%) of the 49 cefotaxime/ceftazidime isolates were confirmed ESBL producers. Twenty-two of the 23 ESBL positive isolates (95.7%) carried the bla genes as follows: 95.5% (21/22) for blaSHV; 68.2% (15/22) for blaTEM; and 50.0% (11/22) for blaCTX-M. Eleven (50%) of the 22 isolates carried two bla genes (blaSHV and blaCTX-M, blaTEM and blaCTX-M and blaTEM and blaSHV). Conclusion: The E. coli isolates were less resistant to imipenem, gentamicin and cefoxitin; most isolates were MAR, with resistance to 7 antibiotics being the most predominant. In addition, the blaSHV gene was the most common ESBL gene detected in confirmed ESBL-producing E. coli isolates.


Author(s):  
R. H. Abimiku ◽  
Y. B. Ngwai ◽  
I. H. Nkene ◽  
B. E. Bassey ◽  
P. A. Tsaku ◽  
...  

Aims: This study investigated the molecular diversity and extended spectrum beta-lactamase resistance of diarrheagenic E. coli isolated from patients attending selected healthcare facilities in Nasarawa State, Nigeria. Place and Duration of Study: Department of Microbiology, Nasarawa State University, P.M.B 1022, Keffi, Nasarawa State, Nigeria; between December 2017 and June, 2019. Methodology: A total of 207 confirmed E. coli isolates (using standard microbiological methods) from loose stool samples of patients with suspected cases of diarrhea (69 from Federal Medical Centre Keffi [MCK] 69 from General Hospital Akwanga [GHA] and 69 from Dalhatu Araf Specialist Hospital Lafia [DASHL]) were included in this study. Results: Phenotypic detection of ESBL production by β-lactam resistant isolates was done using double disc synergy test. Molecular detection of ESBL genes in phenotypically confirmed ESBL producers was done using Polymerase Chain Reaction. Out of 56 isolates jointly resistant to cefotaxime and/or ceftazidime and ciprofloxacin from DASHL, FMCK and GHA, 53.6% (30/56) were ESBL producers, distributed in relation to the hospitals as follows: blaCTX-M in DASHL was 6(66.7%), FMCK was 11(100.0%), and GHA was 10(100.0%); blaSHV in DASHL was 8(88.9%), FMCK was 7(63.6%), and GHA was 10(100.0%), and blaTEM in DASHL was 9(100.0%), FMCK was 10(90.9%), and GHA was 10(100.0%). Also, the occurrence of blaSHV was 100.0% in GHA but 88.9% in DASHL. The detection DEC was high in DASHL (88.9%) but low inGHA (58.8%). The occurrence of ETEC was high in GHA (60.0%) while EAEC was also high in FMCK (81.8%) and GHA (70.0%). The isolates were distributed into strain A – J based on RFLP pattern and the occurrence of strain A was high in GHA (70.0%) but low in DASHL (33.3%). Conclusion: Most of the isolates were both diarrheagenic and ESBL resistant, and the predominant ESBL and pathotypes genes were blaCTX-M, blaTEM and EAEC. Further studies on molecular detection of sub-types of ESBL and sequencing of diarrheagenic pathotypes genes should be carried out.


Author(s):  
S. C. Tama ◽  
Y. B. Ngwai ◽  
G. R. I. Pennap ◽  
I. H. Nkene ◽  
R. H. Abimiku

Aims: This study investigates and reports the production of extended spectrum beta-lactamase in Escherichia coli isolates in poultry droppings sourced from selected poultry farms in Karu, Nigeria Study Design:  Cross sectional study Place and Duration of Study: Department of Microbiology, Nasarawa State University, Keffi, between August 2019 and February 2020. Methodology: Escherichia coli was isolated from the samples using standard cultural and microbiological methods. Antibiotic susceptibility testing and minimum inhibitory concentrations were evaluated as described by the Clinical and Laboratory Standards Institute (CLSI). The detection of ESBL production in E. coli isolates was carried out using double disc synergy test.  In addition, molecular detection of ESBL genes was carried out using Polymerase Chain Reaction (PCR) method. Results: All (100%) samples collected had E. coli. Antibiotic resistances in the isolates in decreasing order were as follows: ampicillin (96.7%), streptomycin (94.4%), sulphamethoxazole /trimethoprim (87.8%), amoxicillin/ clavulanic acid (61.1%), gentamicin (52.2%), ciprofloxacin (40.0%), ceftazidime (35.6%), cefotaxime (31.1%), imipenems (22.2%), cefoxitin (13.3%). The commonest antibiotic resistant phenotype was AMP-SXT-S-CTX-CN (8.8%). Multiple antibiotic resistance (MAR) was observed in 92.2% (83/90) of the isolates with the common MAR indices being 0.5 (26.5%), 0.6 (19.2%), 0.4 (13.2%) and 0.9 (10.8%). Fifty nine of the eighty beta-lactam resistant isolates (73.7%) were confirmed ESBL producers. 55 of the 59 ESBL positive isolates (93.2%) carried bla genes as follows:   blaSHV (50/55, 90.9%), blaTEM (31/55, 56.3%) and blaCTX-M (46/55, 83.6%). Thirty six (65.5%) of the 55 isolates carried two bla genes (blaSHV and blaTEM, blaTEM and blaCTX-M, and blaCTX-M and blaSHV). Conclusion: The E. coli isolates showed lower resistances to cefoxitin, imipenem, cefotaxime, ceftazidime, and ciprofloxacin and most isolates were MAR, with resistance to 5 antibiotics being the most predominant. In addition, blaSHV gene was the most common ESBL gene detected in the confirmed ESBL-producing E. coli isolates.


Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Olivia Sochi Egbule ◽  
Benson C. Iweriebor ◽  
Edward Ikenna Odum

Antibiotic resistance evolution among pathogenic microorganisms has become a huge burden globally as it has increased the burden of diseases amongst humans and animals. The prevalence of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-Ec) and metallo beta-lactamase-producing Escherichia coli (MBL-Ec) isolated from pig abattoir and handlers in retail shops was studied. In addition, the relationship between the isolates’ prevalence and the background characteristics of the butchers/retailers was also investigated. Samples from 32 hand swabs of pork sellers at retail shops and 8 butchers at abattoirs, as well as 272 swabs taken from knives, tables, floors, water troughs, and carcasses from both retail shops and abattoirs, were collected. Escherichia coli (E. coli) was isolated from hand swabs, fomites, and carcasses and were identified by standard microbiological procedures. The isolates susceptibility to nitrofurantoin (300 µg), ciprofloxacin (5 µg), ceftazidime (30 µg), cefuroxime (30 µg), gentamicin (10 µg), cefixime (5 µg), ofloxacin (5 µg), amoxicillin/clavulanic acid (30 µg), imipenem (10 µg), and meropenem (10 µg) and their ability to produce ESBL and MBL was determined by phenotypic methods. Demographic information of the handlers was retrieved by means of a structured questionnaire and, in some cases, via face to face interviews. Out of 104 E. coli isolates from both sources, 52 (50.0%) and 8 (7.7%) were ESBL and MBL producers, respectively. ESBL was more prevalent on the hands of the retailers (40.6%) and butchers (75.0%). The isolates were 100% resistant to ceftazidime, cefotaxime, and amoxicillin–clavulanic acid and 4.8% resistant to nitrofurantoin. Diverse resistance patterns were observed among ESBL-Ec and MBL-Ec. It was found that 90% of ESBL-Ec and 100% of MBL-Ec were multidrug-resistant. A possible epidemiological link between the two sources was observed. The prevalence of E. coli ESBL- and MBL-producing isolates was associated with the duty performed by handlers (p = 0.012) and gender (p = 0.012). Our results provide evidence that the handlers’ hands and abattoir environment had a great role to play in the high prevalence and resistance profiles of the microorganisms.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Sahar Besharati Zadeh ◽  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari ◽  
Ahmad Farajzadeh Sheikh

Background: A major problem in the treatment of the infectious diseases healthcare centers is extended-spectrum beta-lactamase (ESBL)-producing bacteria. Objectives: The aim of present study was to identify the antibiotic sensitivity pattern and prevalence of the blaCTX, blaTEM, and blaSHV genes in Escherichia coli and Klebsiella pneumoniae strains. Methods: In this study, E. coli and K. pneumoniae specimens were collected in Shushtar hospitals, Khuzestan (southwest Iran), from March to October 2015. Sensitivity antibiotic pattern performed by disc diffusion method. Double disc synergy test (DDST) done for identifying ESBLs isolates and PCR for blaTEM, blaSHV, and blaCTX-M genes. Results: One hundred E. coli and 30 K. pneumoniae isolates were collected from different specimens. The highest rates of antibiotic resistance related to cefotaxime and aztreonam in E. coli and K. pneumoniae. ESBL-harboring K. pneumoniae and E. coli were 13.5 and 28%, respectively. Overall, bla TEM was the most prevalent ESBL gene. Conclusions: In this study, the rate of antibiotic resistance was high, and due to the carrying of coding genes on mobile genetic elements and the ability of these elements to carry genes that create resistance to other antibiotic families, identification and isolation of these isolates are essential to find effective antibiotics and eliminate the infection.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S107-S108
Author(s):  
J Xin Liao ◽  
Vrishali Lopes ◽  
Haley J Appaneal ◽  
Kerry LaPlante ◽  
Aisling Caffrey

Abstract Background Public health institutions including the World Health Organization and the United States Centers for Disease Control and Prevention (CDC) have recognized the threat of antibiotic resistant infections caused by Gram-negative bacteria. These bacteria are particularly concerning as they can demonstrate resistance to all available antibiotic classes through various mechanisms. We set out to assess antibiotic resistance trends in Gram-negative bacteria to optimize antimicrobial stewardship and infection control initiatives in our health system. Methods We identified positive cultures (1st per patient per month) of P. aeruginosa and select Enterobacterales (Citrobacter, Escherichia coli, Enterobacter, Klebsiella, Morganella morganii, Proteus mirabilis, Serratia marcescens) collected from patients hospitalized at Veterans Affairs (VA) Medical Centers nationally from 2011 to 2020. Time trends were assessed with joinpoint regression to estimate average annual percent changes (AAPC) with 95% confidence intervals (CIs) for the following resistance phenotypes utilizing CDC definitions: multi-drug resistance (MDR), extended-spectrum beta-lactamase (ESBL), and carbapenem (CR) and fluoroquinolone (FR) resistance. Results We included 496,384 isolates in our study: E. coli (32.6%), Klebsiella (20%), P. aeruginosa (18.9%), P. mirabilis (11.5%), Enterobacter (7.8%), Citrobacter (3.7%), S. marcescens (2.9%), and M. morganii (2.6%). Trends in resistance are shown in the figures. MDR, ESBL, CR, and FR decreased significantly (p< 0.05) over the study period for most of the organisms assessed, with the exception of MDR and ESBL E. coli and CR P. mirabilis which remained stable, and CR M. morganii which increased significantly by 7.1% per year (95% CI 0.2% to 14.5%). The largest decreases were in CR E. coli by 29.5% per year (95% CI -36.5% to -21.8%), CR Klebsiella by 23.7% per year (95% CI -27.6% to -19.5%), and MDR and CR S. marcescens by 12.2% (95% CI -14.4% to -9.9%) and 12.3% per year (95% CI -16.2% to -8.1%), respectively. Figure 1. Antibiotic resistance trends in Citrobacter spp., E. coli, Enterobacter spp., and Klebsiella spp. Antibiotic resistance trends (by percentage) in (a) Citrobacter spp, (b) E. coli, (c) Enterobacter spp, and (d) Klebsiella spp from 2011-2020. Abbreviations: MDR = multi-drug resistance (defined as non-susceptible to at least 1 drug in at least 3 of the following categories: extended-spectrum cephalosporins, fluoroquinolones, aminoglycosides, carbapenems, piperacillin/tazobactam); ESBL = extended spectrum beta-lactamase (defined as non-susceptible to at least 1 of the following drugs: cefepime, ceftriaxone, cefotaxime, ceftolozane/tazobactam, ceftazidime/avibactam); CR = carbapenem resistance (defined as non-susceptible to at least 1 carbapenem); FR = fluoroquinolone resistance (defined as non-susceptible to at least 1 fluoroquinolone); AAPC = annual average percentage change; CI = confidence interval. Figure 2. Antibiotic resistance trends in Pseudomonas aeruginosa, Proteus mirabilis, Serratia marcescens, and Morganella morganii. Antibiotic resistance trends (by percentage) in (e) Pseudomonas aeruginosa, (f) Proteus mirabilis, (g) Serratia marcescens, and (h) Morganella morganii from 2011-2020. Abbreviations: MDR = multi-drug resistance (defined as non-susceptible to at least 1 drug in at least 3 of the following categories: extended-spectrum cephalosporins, fluoroquinolones, aminoglycosides, carbapenems, piperacillin/tazobactam); ESBL = extended spectrum beta-lactamase (defined as non-susceptible to at least 1 of the following drugs: cefepime, ceftriaxone, cefotaxime, ceftolozane/tazobactam, ceftazidime/avibactam); CR = carbapenem resistance (defined as non-susceptible to at least 1 carbapenem); FR = fluoroquinolone resistance (defined as non-susceptible to at least 1 fluoroquinolone); AAPC = annual average percentage change; CI = confidence interval. Conclusion Overall, MDR, ESBL, CR, and FR in Enterobacterales and P. aeruginosa decreased from 2011 to 2020 in the VA. These results may be related to the robust infection control and antimicrobial stewardship programs instituted among VA Medical Centers nationally. Disclosures Kerry LaPlante, PharmD, Merck (Research Grant or Support)Pfizer Pharmaceuticals (Research Grant or Support)Shionogi, Inc (Research Grant or Support) Aisling Caffrey, PhD, Merck (Research Grant or Support)Pfizer (Research Grant or Support)Shionogi, Inc (Research Grant or Support)


2006 ◽  
Vol 60 (1-2) ◽  
pp. 21-31
Author(s):  
Dusan Misic ◽  
Zorica Stosic ◽  
Ferenc Kiskarolj ◽  
Vladica Adamov ◽  
Ruzica Asanin

The presence of multiresistance to the effects of antibiotics and chemotherapeutics and extended spectrum beta-lactamase were examined in 45 strains of E. coli and 35 strains of Salmonella. The strains of E. coli originated from several species of domestic animals: dogs, cats, poultry, and cattle, and 30 strains of Salmonella originated from poultry, 4 strains from cattle, and 1 strain from swine. The presence of the following serovarieties was established using serological examinations: Salmonella Enteritidis 17 strains, Salmonella Gallinarum 1 strain, Salmonella Hartford 5 strains, Salmonella Anatum 1 strain, Salmonella Typhimurium 4 strains, Salmonella Agona 1 strain, Salmonella Infantis 1 strain, Salmonella Thompson var. Berlin 1 strain, Salmonella Tennessee 1 strain, Salmonella Senftenberg 1 strain, Salmonella Glostrup 1 strain, and Salmonella Hadar 1 strain. In the examinations of the listed strains we used antibiogram discs of ampicillin, amoxicillin with clavulanic acid, cephalexin, cephtriaxon, cephotaxim, cephtazidime, aztreonam, gentamycin, chloramphenicol, tetracycline, cyprofloxacine, and a combination of sulphamethoxasole and trimethoprim. The lowest prevalence of multiresistance in E. Coli strains to 3 or more antibiotics was established in dogs 20%, and the highest in 60% strains originating from swine. In 62.88% strains of Salmonella we established sensitivity to all applied antibiotics. Resistance was also established in a small number of the examined strains to ampicillin (11 strains), to tetracycline (5 strains), to amoxicillin with clavulanic acid (5 strains), to sulphamethoxasole with trimethoprim (5 strains), to gentamycin (3 strains), and to cloramphenicol (1 strain). Of all the examined strains of Salmonella, 6 strains originating from poultry exhibited multiresistence. The presence of extended spectrum beta-lactamase effects examined using the ESBL test, was not established in strains of E. coli and Salmonella strains.


2021 ◽  
Author(s):  
Maeghan Easler ◽  
Clint Cheney ◽  
Jared D Johnson ◽  
Marjan Khorshidi Zadeh ◽  
Jacquelynn N Nguyen ◽  
...  

Infections resistant to broad spectrum antibiotics due to the emergence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae is of global concern. This study characterizes the resistome (i.e., entire ecology of resistance determinants) of 11 ESBL-producing Escherichia coli isolates collected from eight wastewater treatment utilities across Oregon. Whole genome sequencing was performed to identify the most abundant antibiotic resistance genes including ESBL-associated genes, virulence factors, as well as their sequence types. Moreover, the phenotypes of antibiotic resistance were characterized. ESBL-associated genes (i.e., blaCMY, blaCTX, blaSHV, blaTEM) were found in all but one of the isolates with five isolates carrying two of these genes (4 with blaCTX and blaTEM; 1 with blaCMY and blaTEM). The ampC gene and virulence factors were present in all the E. coli isolates. Across all the isolates, 31 different antibiotic resistance genes were identified. Additionally, all E. coli isolates harbored phenotypic resistance to beta-lactams (penicillins and cephalosporins), while eight of the 11 isolates carried multi-drug resistance phenotypes (resistance to three or more classes of antibiotics). Findings highlight the risks associated with the presence of ESBL-producing E. coli isolates in wastewater systems that have the potential to enter the environment and may pose direct or indirect risks to human health.


2021 ◽  
Vol 19 (3) ◽  
pp. 525-535
Author(s):  
Kusnul Yuli Maulana ◽  
◽  
Duangporn Pichpol ◽  
Nur Rohmi Farhani ◽  
Dyah Ayu Widiasih ◽  
...  

Extended Spectrum Beta Lactamase (ESBL)-producing Escherichia coli (E. coli) infections are a global health challenge resulting from human contact with infected animals and contaminated farm environments. This study aims to identify antimicrobial resistance patterns of ESBL-producing E. coli isolated from dairy farms in the Sleman District of Yogyakarta Province, Indonesia. Ninety-three dairy farms with a history of antibiotic use in the previous 6 months were identified. Samples were collected from 6 different sources (feces, milk, wastewater, animal drinking water, feed and rinses of workers’ hands) on each farm during August through November 2020. These samples were cultured with conventional microbiological methods for the isolation of ESBL-producing E. coli. ESBL-producing E. coli was identified in one or more of the sources in 54% (50/93) of the dairy farms sampled. Fecal samples were the most commonly positive (25%) while wastewater, animal drinking water feed, milk and hand rinses were positive at 16%, 10%, 5%, 4% and 3% respectively. Colonies from each positive sample were screened for antibiotic susceptibility test using the Vitek-2 system. Resistance to trimethoprim/sulfamethoxazole, tetracycline and gentamicin were found in 74%, 63% and 48% of the isolates, respectively. Multidrug resistant (MDR) was identified in 50% (63/127) of the isolates. In conclusion, ESBL-producing E. coli appears widespread in dairy farms using antibiotics and antimicrobial resistance among these bacteria is common in this study area. Further study of the risk of human transmission from contaminated cattle and their environments could benefit the national antimicrobial resistance strategic plans.


Sign in / Sign up

Export Citation Format

Share Document