scholarly journals Optimization of Pectinase and Protease Produced from Bacillus subtilis Isolated from Market Waste

Author(s):  
C. Anab-Atulomah ◽  
E. Nwachukwu

Aims: The objective of the study was to produce and optimize protease and pectinase from Bacillus subtilis isolated from market waste. Place and Duration of Study: Department of Microbiology (laboratory unit), Michael Okpara University of Agriculture Umudike, Abia State Nigeria. Methodology: The production and optimization of protease and pectinase from bacteria isolated from solid market waste was investigated. Isolated bacteria from the waste were screened for protease and pectinase production using skim milk agar and pectin agar respectively. Using morphological, biochemical and molecular technique the enzymes producing isolate was confirmed as Bacillus subtilis. Protease and Pectinase were produced by Bacillus subtilis using submerged fermentation in gelatin broth and pectin broth respectively. The enzymes were purified using ammonium sulphate precipitation, dialysis and ion-exchange chromatography. Optimization using different temperatures, pH and nutrient sources was done. Enzyme activity was measured. Results: Purified protease exhibited maximum activity of 8.72U/ml at 40oC while pectinase exhibited maximum activity of 8.98U/ml at 50oC. Glucose as a carbon source and peptone as a nitrogen source gave optimum activity for both enzymes. Both pectinase and protease exhibited optimum activity at pH 9. There was significant difference (P=.05) in enzyme activity at different temperatures, pH and nitrogen sources for both protease and pectinase. There was no significant difference in pectinase activity at P=.05 for the different carbon sources while there was significant difference for protease activity for the different carbon sources at P=.05. Conclusion: Production of microbial enzymes such as protease and pectinase from waste material is an eco-friendly process and cheaper option for large scale use of enzymes in industry.

Parasitology ◽  
1968 ◽  
Vol 58 (3) ◽  
pp. 641-651 ◽  
Author(s):  
J. Barrett

The development of the free-living infective larvae of a homogonic strain Strongyloides ratti is described.The larvae develop only between 15 and 34 °C. Transfer experiments show the temperature block to be in the preparation for the second moult.Within the temperature range 15–34 °C, increasing the temperature speeds up the rate of development of all the larval stages equally, the Q10 for development being 2·5.The maximum percentage development occurs at 20 °C. The percentage development is highest in faeces–peat culture (95% development at 20 °C), whilst the percentage development in charcoal and vermiculite cultures is about the same (75% development at 20 °C.).Larvae grown on charcoal cultures are larger than those grown on vermiculite, which are larger than those grown on peat. No significant difference was found in the length:oesophagus and length:width ratios or in the variability of larvae grown at different temperatures or on different culture media.Different worm densities in the cultures of from 2000 to 10000 larvae per g of culture did not affect either the size of the infective larve or the percentage development.The optimum temperature for survival is 15 °C. Worms grown at 20 °C lived longer than worms grown at any other temperature. There was no evidence of temperature adaptation by the larvae.The infective larvae are positively thermotactic, and show maximum activity at 37 °C.I should like to thank my supervisor, Dr Tate, for his advice and encouragement. The work was carried out during the tenure of a Medical Research Council Scholarship.


2016 ◽  
Vol 70 (6) ◽  
pp. 717-724
Author(s):  
Nwokoro Ogbonnaya ◽  
Eze Chukwuemeka

Polygalacturonase was produced from Aspergillus niger BC 23 which was isolated from spoiled Irvingia gabonensis fruit. The influence of carbon substrates on enzyme production showed that the medium containing sucrose produced a maximum enzyme yield of 38.5 U/mg protein after 72 h. Enzyme productivity in this medium was much higher than in the medium that contained only citrus pectin as the sole carbon source. Medium containing yeast extract as a nitrogen source caused the production of specific enzyme activity of 31.2 U/mg protein. Results on the effect of metal ions on enzyme activity showed that Ca2+ gave a percent relative activity of 214% in comparison to the native enzyme activity. The enzyme showed maximum activity in slight acid and neutral pH media with optimal activity at pH 4.0. Temperature activity profile of the enzyme showed best activity at a temperature of 35?C. Dried fruit peels were tested for their abilities to support enzyme production in a media devoid of citrus pectin. The best enzyme productivity of 102.3 U/mg protein was achieved after 72 h in the medium containing orange peel and this level was much higher than that achieved when pure carbon sources or citrus pectin alone were used for enzyme production.


2020 ◽  
Author(s):  
Jianhua Zhang ◽  
Qing Cui ◽  
Bingjun Qian ◽  
Xiangjun Sun

Abstract Background: Nattokinase (NK), a fibrinolytic enzyme, can be produced by culturing recombinant Bacillus subtilis in Luria-Bertani broth in a shaking flask. For use as a nutraceutical, however, a large-scale preparation and a simple purification process are required.Results: The present study utilized a fed-batch process to cultivate a B. subtilis strain carrying a pHT01 plasmid with an NK-encoding gene (B. subtilis/pHT01-aprN1). For batch A (FB A), with a pH-stat two-stage fermentation strategy, we achieved an activity of 2910.5 ± 21.6 U mL-1 and a specific activity of 30.32 U ml-1 OD600-1. Then, we changed the strategy with a later induction and lower feeding rate to pursue higher cell density and thus higher enzyme activity, a 11.9-fold activity of 4521.8 ± 23.8 U mL-1 was acquired, however, the specific activity was lower than FB A. For the third batch, low-glycerol-level-maintain feeding strategy was followed, and finally, a NK activity of 7778 ±17.28 U mL-1 was obtained, according to our knowledge, it was the highest activity assayed by the fibrin plate method ever reported. Furthermore, fermentation supernatant was successively purified by ammonium sulfate precipitation and nickel column affinity chromatography with a total NK recovery rate of 65.2%.Conclusions: Our results indicate that there is a balance between the cell growth rate and NK expression when recombinant Bacillus subtilis is cultured with a fed-batch process. The equilibrium state can be attained by optimizing the induction and feeding strategy, and thus a high cell density and enzyme activity can be achieved.


2012 ◽  
Vol 47 (1) ◽  
pp. 69-76 ◽  
Author(s):  
MG Sher ◽  
M Nadeem ◽  
Q Syed ◽  
M Irfan ◽  
S Baig

UV mutation of the strain has significant contributation to enhance the yield of protease enzyme from Bacillus subtilis bacteria under the  cultivation conditions in submerged fermentation. The fermentation medium used for the production of protease composed of carbon  sources 1%, organic 1% or inorganic nitrogen sources 0.5% , K2HPO4 0.2 %, CaCl2 0.04% and MgSO4 0.02 % by mutated Bacillus subtilis  G-4 under the optimum parameters which are important to induce the mutated strain to produce high units of the protease, which were  temperature 37.5°C, pH 9, inoculum size 3 % v/v, glucose 1% as carbon source and peptone 1% as nitrogen source were give the maximum  455.25 + 1.66 units of protease. The results of stability studies revealed that protease of B. subtilis G-4 was stable over a broad range  of temperature (30 to 60°C) and pH (8 to 12). However, maximum activity (155.45U/ml) was observed at temperature 50°C and pH 10.  These characteristics render its potential use in detergent industries for detergent formulation.DOI: http://dx.doi.org/10.3329/bjsir.v47i1.10725 Bangladesh J. Sci. Ind. Res. 47(1), 69-76, 2012


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2018 ◽  
Vol 15 (7) ◽  
pp. 610-617 ◽  
Author(s):  
Huifeng Zhang ◽  
Dan Liu ◽  
Huanhuan Huang ◽  
Yujia Zhao ◽  
Hui Zhou

Background: β-amyloid (Aβ) accumulates abnormally to senile plaque which is the initiator of Alzheimer's disease (AD). As one of the Aβ-degrading enzymes, Insulin-degrading enzyme (IDE) remains controversial for its protein level and activity in Alzheimer's brain. Methods: The electronic databases PubMed, EMBASE, The Cochrane Library, OVID and Sinomed were systemically searched up to Sep. 20th, 2017. And the published case-control or cohort studies were retrieved to perform the meta-analysis. Results: Seven studies for IDE protein level (AD cases = 293; controls = 126), three for mRNA level (AD cases = 138; controls = 81), and three for enzyme activity (AD cases = 123; controls = 75) were pooling together. The IDE protein level was significantly lower in AD cases than in controls (SMD = - 0.47, 95% CI [-0.69, -0.24], p < 0.001), but IDE mRNA and enzyme activity had no significant difference (SMD = 0.02, 95% CI [-0.40, 0.43] and SMD = 0.06, 95% CI [-0.41, 0.53] respectively). Subgroup analyses found that IDE protein level was decreased in both cortex and hippocampus of AD cases (SMD = -0.43, 95% CI [-0.71, -0.16], p = 0.002 and SMD = -0.53, 95% CI [-0.91, -0.15], p = 0.006 respectively). However, IDE mRNA was higher in cortex of AD cases (SMD = 0.71, 95% CI [0.14, 1.29], p = 0.01), not in hippocampus (SMD = -0.26, 95% CI [-0.58, 0.06]). Conclusions: Our results indicate that AD patients may have lower IDE protease level. Further relevant studies are still needed to verify whether IDE is one of the factors affecting Aβ abnormal accumulation and throw new insights for AD detection or therapy.


2017 ◽  
Vol 6 (8) ◽  
pp. 5459
Author(s):  
Chandra Teja K. ◽  
Rahman S. J.

Entomopathogenic fungi like Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii are used in biological control of agricultural insect pests. Their specific mode of action makes them an effective alternative to the chemical Insecticides. Virulent strains of Entomopathogenic fungi are effectively formulated and used as bio-insecticides world-wide. Amenable and economical multiplication of a virulent strain in a large scale is important for them to be useful in the field. Culture media plays a major role in the large-scale multiplication of virulent strains of Entomopathogens. Different substrates and media components are being used for this purpose. Yet, each strain differs in its nutritional requirements for the maximum growth and hence it is necessary to standardize the right components and their optimum concentrations in the culture media for a given strain of Entomopathogen. In the current study, three different nitrogen sources and two different carbon sources were tried to standardize the mass multiplication media for seven test isolates of Entomopathogenic fungi. A study was also conducted to determine the ideal grain media for the optimum conidial yields of the test isolates. Yeast extract was found to be the best Nitrogen source for the isolates. The isolates tested, differed in their nutritional requirements and showed variation in the best nitrogen and carbon sources necessary for their growth. Variation was also found in the optimum concentration of both the ingredients for the growth and sporulation of the isolates. In the solid-state fermentation study, rice was found to be the best grain for the growth of most of the fungi followed by barley. The significance of such a study in the development of an effective Myco-insecticide is vital and can be successfully employed in agriculture is discussed.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1670 ◽  
Author(s):  
Wölfle-Roos JV ◽  
Katmer Amet B ◽  
Fiedler J ◽  
Michels H ◽  
Kappelt G ◽  
...  

Background: Uncemented implants are still associated with several major challenges, especially with regard to their manufacturing and their osseointegration. In this study, a novel manufacturing technique—an optimized form of precision casting—and a novel surface modification to promote osseointegration—calcium and phosphorus ion implantation into the implant surface—were tested in vivo. Methods: Cylindrical Ti6Al4V implants were inserted bilaterally into the tibia of 110 rats. We compared two generations of cast Ti6Al4V implants (CAST 1st GEN, n = 22, and CAST 2nd GEN, n = 22) as well as cast 2nd GEN Ti6Al4V implants with calcium (CAST + CA, n = 22) and phosphorus (CAST + P, n = 22) ion implantation to standard machined Ti6Al4V implants (control, n = 22). After 4 and 12 weeks, maximal pull-out force and bone-to-implant contact rate (BIC) were measured and compared between all five groups. Results: There was no significant difference between all five groups after 4 weeks or 12 weeks with regard to pull-out force (p > 0.05, Kruskal Wallis test). Histomorphometric analysis showed no significant difference of BIC after 4 weeks (p > 0.05, Kruskal–Wallis test), whereas there was a trend towards a higher BIC in the CAST + P group (54.8% ± 15.2%), especially compared to the control group (38.6% ± 12.8%) after 12 weeks (p = 0.053, Kruskal–Wallis test). Conclusion: In this study, we found no indication of inferiority of Ti6Al4V implants cast with the optimized centrifugal precision casting technique of the second generation compared to standard Ti6Al4V implants. As the employed manufacturing process holds considerable economic potential, mainly due to a significantly decreased material demand per implant by casting near net-shape instead of milling away most of the starting ingot, its application in manufacturing uncemented implants seems promising. However, no significant advantages of calcium or phosphorus ion implantation could be observed in this study. Due to the promising results of ion implantation in previous in vitro and in vivo studies, further in vivo studies with different ion implantation conditions should be considered.


2021 ◽  
Vol 13 (6) ◽  
pp. 1180
Author(s):  
Da Guo ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Xinming Zhu ◽  
Yazhen Jiang ◽  
...  

The Hindu Kush Himalayan (HKH) region is one of the most ecologically vulnerable regions in the world. Several studies have been conducted on the dynamic changes of grassland in the HKH region, but few have considered grassland net ecosystem productivity (NEP). In this study, we quantitatively analyzed the temporal and spatial changes of NEP magnitude and the influence of climate factors on the HKH region from 2001 to 2018. The NEP magnitude was obtained by calculating the difference between the net primary production (NPP) estimated by the Carnegie–Ames Stanford Approach (CASA) model and the heterotrophic respiration (Rh) estimated by the geostatistical model. The results showed that the grassland ecosystem in the HKH region exhibited weak net carbon uptake with NEP values of 42.03 gC∙m−2∙yr−1, and the total net carbon sequestration was 0.077 Pg C. The distribution of NEP gradually increased from west to east, and in the Qinghai–Tibet Plateau, it gradually increased from northwest to southeast. The grassland carbon sources and sinks differed at different altitudes. The grassland was a carbon sink at 3000–5000 m, while grasslands below 3000 m and above 5000 m were carbon sources. Grassland NEP exhibited the strongest correlation with precipitation, and it had a lagging effect on precipitation. The correlation between NEP and the precipitation of the previous year was stronger than that of the current year. NEP was negatively correlated with temperature but not with solar radiation. The study of the temporal and spatial dynamics of NEP in the HKH region can provide a theoretical basis to help herders balance grazing and forage.


Sign in / Sign up

Export Citation Format

Share Document