scholarly journals Permeation Resistance of Sawdust Ash Blended Cement Laterized Concrete

2019 ◽  
Vol 21 (2) ◽  
pp. 76-83 ◽  
Author(s):  
Samuel Olufemi Folagbade ◽  
Aluko Olawale

This paper compared the initial surface absorption of conventional concrete and laterized concrete containing Portland cement (PC) and sawdust ash (SDA). Laterized concrete was produced at laterite contents of 15 and 30% as partial replacement for sand and SDA contents of 10 and 20% as partial replacement for PC. Compressive strengths at 28 days and initial surface absorption after 10 minutes (ISA-10) at 28, 60 and 90 days were determined at the water/cement ratios of 0.35, 0.50 and 0.65 and assessed at equal 28-day strengths of 25-35 N/mm2. At equal water/cement ratios, compressive strength reduced and ISA-10 increased with increasing content of laterite and SDA. On the other hand, compressive strength and resistance to surface absorption of the blended cement laterized concretes increased with increasing curing age. At equal strengths, all the blended cement laterized concretes have better resistance to surface absorption than the conventional PC concrete.

Author(s):  
Theodore Gautier Bikoko ◽  
Jean Claude Tchamba ◽  
Valentine Yato Katte ◽  
Divine Kum Deh

To fight against the high cost and the increasing scarcity of cement and at the same time to reduce the CO2 greenhouse gases emission associated with the production of Portland cement, two types of wood ashes as a substitute of cement in the production of concretes were investigated. In this paper, we substituted cement by two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 30 % on one hand, and on the other hand, we added these two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 10 % by weight of cement in the concrete samples. After 7, 14 and 28 days of curing, compressive strength tests were conducted on these concrete samples. The findings revealed that using wood ashes as additives/admixtures or as a substitute of cement in the production/manufacturing of concrete decreased the compressive strength of concrete. Hence, it can be said that wood ash has a negative influence on the strength of concrete. At three percent (3%) and ten percent (10%) of addition, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie, whereas at five percent (5%) of addition, the wood ash from avocado specie offers better resistance compared to the wood ash from eucalyptus specie. At thirty percent (30%) of substitution, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie. The compressive strengths increase with the increase of curing age.


2021 ◽  
Vol 31 (5) ◽  
pp. 275-282
Author(s):  
Théodore Gautier L.J. Bikoko

To fight against the high cost and the increasing scarcity of cement and at the same time to reduce the CO2 greenhouse gases emission associated with the production of Portland cement, two types of wood ashes as a substitute of cement in the production of concretes were investigated. In this paper, we substituted cement by two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 30% on one hand, and on the other hand, we added these two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 10% by weight of cement in the concrete samples. After 7, 14 and 28 days of curing, compressive strength tests were conducted on these concrete samples. The findings revealed that using wood ashes as additives/admixtures or as a substitute of cement in the production/manufacturing of concrete decreased the compressive strength of concrete. Hence, it can be said that wood ash has a negative influence on the strength of concrete. At three percent (3%) and ten percent (10%) of addition, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie, whereas at five percent (5%) of addition, the wood ash from avocado specie offers better resistance compared to the wood ash from eucalyptus specie. At thirty percent (30%) of substitution, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie. The compressive strengths increase with the increase of curing age.


2017 ◽  
Vol 12 (2) ◽  
pp. 101-106 ◽  
Author(s):  
Galyna Kotsay

Abstract Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.


2016 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Neelu Das ◽  
Shashikant Singh

 In this paper, the potential use of water hyacinth stem ash (WHA) in the partial replacement of cement is studied. WHA was used as a replacement for ordinary Portland cement at 10, 15, 20 and 25 wt. %. To evaluate the pozzolanic activity of WHA, the properties investigated were chemical composition, particle size, soundness, setting time, specific gravity, presence of crystalline matter, compressive strength, water absorption and sorption. Mortar cubes were tested for compressive strength up to the age of 56 days, whereas water absorption and sorption tests are carried out at the age of 28 days. Test results reveal that mortar cubes with 10% WHA substitution for Portland cement produced comparative compressive strength values to control mortar. It was also observed that the use of WHA in Portland cement has reduced water absorption characteristics.


2012 ◽  
Vol 19 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Mao-Chieh Chi

AbstractSugar cane bagasse ash (SCBA), a by-product of sugar and alcohol production, is one of the potential pozzolanic material that can be blended with Portland cement. In this study, SCBA with particle sizes <45 μm was used to replace type I ordinary Portland cement with various dosages (10%, 20%, and 30%) by weight of binder. The water/cementitious material (w/cm) and sand/binder ratios were kept at constants of 0.55 and 2.75, respectively. Composites were mixed, and effects of SCBA on properties were investigated by conducting flow test, water absorption test, initial surface absorption test, drying shrinkage test, compressive strength test, rapid chloride penetration test (RCPT), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). Experimental results show that the flow spread of fresh mortars would decrease with an increase of SCBA replacement. The specimens with 10% SCBA have the superior performance on compressive strength, drying shrinkage, water absorption, initial surface absorption, and chloride ion penetration, TGA, and SEM at the age of 56 days. It indicates that 10% cement replacement of SCBA may be considered as the optimum limit.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


2021 ◽  
Vol 1021 ◽  
pp. 21-34
Author(s):  
Zahraa Alaa M.A. Ali Khan ◽  
Zena K. Abbas

Roller compacted concrete (RCC) is a special type of concrete with zero or even negative slump consistency. In this work, it had aimed to produce an RCC mix suitable for roads paving with minimum cost and better engineering properties so, different RCC mixes had prepared i.e. (M1, M2, M3, and M4) using specified percentages of micro natural silica sand powder (SSP) as partial replacement of (0%, 5%, 10%, and 20%) by weight of sulfate resistant Portland cement. Additionally, M-sand, crushed stone, filler, and water had been used. The results had obtained after 28 days of water curing. The control mix (M1) had satisfied the required f ‘c with accepted results for the other tests. M2 mix with SSP of 5% had achieved the highest results. The f ’c for sawed cubes of (10*10*10) cm had increased by 2.26% and 3.16% when tested in directions (ꓕ and //) to the direction of loading respectively. R results for sawed prisms of (38*10*10) cm had increased by 8.78% and 8.43% when tested on top and bottom faces respectively. The density had increased by 1.04% while the absorption and volume of permeable voids had decreased by 8.11% and 7.83% respectively. The UPV results had also increased by 2.44% and 0.81% for cubes and prisms respectively when compared to the control mix. M3 mix with SSP of 10% had also achieved satisfactory results when compared to the control mix.


2019 ◽  
Vol 2 (2) ◽  
pp. 65
Author(s):  
Purwanto P. ◽  
Himawan Indarto

Portland cement production process which is the conventional concrete constituent materials always has an impact on producing carbon dioxide (CO2) which will damage the environment. To maintain the continuity of development, while maintaining the environment, Portland cement substitution can be made with more environmentally friendly materials, namely fly ash. The substitution of fly ash material in concrete is known as geopolymer concrete. Fly ash is one of the industrial waste materials that can be used as geopolymer material. Fly ash is mineral residue in fine grains produced from coal combustion which is mashed at power plant power plant [15]. Many cement factories have used fly ash as mixture in cement, namely Portland Pozzolan Cement. Because fly ash contains SiO2, Al2O3, P2O3, and Fe2O3 which are quite high, so fly ash is considered capable of replacing cement completely.This study aims to obtain geopolymer concrete which has the best workability so that it is easy to work on (Workable Geopolymer Concrete / Self Compacting Geopolymer Concrete) and obtain the basic characteristics of geopolymer concrete material in the form of good workability and compressive strength. In this study, geopolymer concrete is composed of coarse aggregate, fine aggregate, fly ash type F, and activators in the form of NaOH and Na2SiO3 Be52. In making geopolymer concrete, additional ingredients such as superplastizer are added to increase the workability of geopolymer concrete. From this research, the results of concrete compressive strength above fc' 25 MPa and horizontal slump values reached 60 to 80 centimeters.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


Sign in / Sign up

Export Citation Format

Share Document