scholarly journals APPLICATION OF A SIMPLE HYDRODYNAMIC MODEL TO ESTUARY ENTRANCE

2011 ◽  
Vol 1 (32) ◽  
pp. 42 ◽  
Author(s):  
Errol J. McLean ◽  
Jon B. Hinwood

Tidal inlets which link a tidal basin to the sea via a constricted entrance are common on the south-east Australian coast. Closure, or even significant constriction, raises water levels but restricts tidal range within the basin, while open entrances provide regular and significant tidal exchange with the ocean. A rapid assessment procedure with minimal data requirements has been shown to be informative for monitoring and a useful component of any Decision Support System set up as part of a management structure. Such a system is presented in this paper. It is based on one permanent water level gauge inside the inlet plus the use of a simple, first-order hydrodynamic model to relate the tide range, mean water level and river flow to the inlet cross sectional area. The method is tested against data from the Snowy River Estuary in south-eastern Australia but would be suitable over a range of estuaries. In addition, the framework presented can also provide a mechanism to explore conditions over the range of expected data, thus allowing better selection of model schematization and runs in estuarine systems where the use of 2 or 3D modeling can be justified.

2010 ◽  
Vol 61 (3) ◽  
pp. 271 ◽  
Author(s):  
Jarod Lyon ◽  
Ivor Stuart ◽  
David Ramsey ◽  
Justin O'Mahony

Off-channel habitats, such as wetlands and backwaters, are important for the productivity of river systems and for many species of native fish. This study aimed to investigate the fish community, timing and cues that stimulated movement to and from off-channel habitats in the highly regulated Lake Hume to Lake Mulwala reach of the Murray River, south-eastern Australia. In 2004–05, 193 712 fish were collected moving bi-directionally between a 50-km section of the Murray River and several off-channel habitats. Lateral fish movements approximated water level fluctuations. Generally as water levels rose, fish left the main river channel and moved into newly flooded off-channel habitats; there was bi-directional movement as water levels peaked; on falling levels fish moved back to the permanent riverine habitats. Fish previously classified as ‘wetland specialists’, such as carp gudgeons (Hypseleotris spp.), have a more flexible movement and life-history strategy including riverine habitation. The high degree of lateral movement indicates the importance of habitat connectivity for the small-bodied fish community. Wetlands adjacent to the Murray River are becoming increasingly regulated by small weirs and ensuring lateral fish movement will be important in maintaining riverine-wetland biodiversity.


2021 ◽  
Vol 13 (19) ◽  
pp. 10720
Author(s):  
Muhammad Ali Musarat ◽  
Wesam Salah Alaloul ◽  
Muhammad Babar Ali Rabbani ◽  
Mujahid Ali ◽  
Muhammad Altaf ◽  
...  

The water level in a river defines the nature of flow and is fundamental to flood analysis. Extreme fluctuation in water levels in rivers, such as floods and droughts, are catastrophic in every manner; therefore, forecasting at an early stage would prevent possible disasters and relief efforts could be set up on time. This study aims to digitally model the water level in the Kabul River to prevent and alleviate the effects of any change in water level in this river downstream. This study used a machine learning tool known as the automatic autoregressive integrated moving average for statistical methodological analysis for forecasting the river flow. Based on the hydrological data collected from the water level of Kabul River in Swat, the water levels from 2011–2030 were forecasted, which were based on the lowest value of Akaike Information Criterion as 9.216. It was concluded that the water flow started to increase from the year 2011 till it reached its peak value in the year 2019–2020, and then the water level will maintain its maximum level to 250 cumecs and minimum level to 10 cumecs till 2030. The need for this research is justified as it could prove helpful in establishing guidelines for hydrological designers, the planning and management of water, hydropower engineering projects, as an indicator for weather prediction, and for the people who are greatly dependent on the Kabul River for their survival.


2020 ◽  
Vol 12 (21) ◽  
pp. 3614
Author(s):  
Sajad Tabibi ◽  
Olivier Francis

Global navigation satellite system reflectometry (GNSS-R) uses signals of opportunity in a bi-static configuration of L-band microwave radar to retrieve environmental variables such as water level. The line-of-sight signal and its coherent surface reflection signal are not separate observables in geodetic GNSS-R. The temporally constructive and destructive oscillations in the recorded signal-to-noise ratio (SNR) observations can be used to retrieve water-surface levels at intermediate spatial scales that are proportional to the height of the GNSS antenna above the water surface. In this contribution, SNR observations are used to retrieve water levels at the Vianden Pumped Storage Plant (VPSP) in Luxembourg, where the water-surface level abruptly changes up to 17 m every 4-8 h to generate a peak current when the energy demand increases. The GNSS-R water level retrievals are corrected for the vertical velocity and acceleration of the water surface. The vertical velocity and acceleration corrections are important corrections that mitigate systematic errors in the estimated water level, especially for VPSP with such large water-surface changes. The root mean square error (RMSE) between the 10-min multi-GNSS water level time series and water level gauge records is 7.0 cm for a one-year period, with a 0.999 correlation coefficient. Our results demonstrate that GNSS-R can be used as a new complementary approach to study hurricanes or storm surges that cause abnormal rises of water levels.


2020 ◽  
Author(s):  
John Maskell

<p>Two case studies are considered in the UK, where uncertainty and drivers of coastal flood risk are explored through modelling and visualisations. Visualising the impact of uncertainty is a useful way of explaining the potential range of predicted or simulated flood risk to both expert and non-expert stakeholders.</p><p>Significant flooding occurred in December 2013 and January 2017 at Hornsea on the UK East Coast, where storm surge levels and waves overtopped the town’s coastal defences. Uncertainty in the potential coastal flooding is visualised at Hornsea due to the range of uncertainty in the 100-year return period water level and in the calculated overtopping due to 3 m waves at the defences. The range of uncertainty in the simulated flooding is visualised through flood maps, where various combinations of the uncertainties decrease or increase the simulated inundated area by 58% and 82% respectively.</p><p>Located at the mouth of the Mersey Estuary and facing the Irish Sea, New Brighton is affected by a large tidal range with potential storm surge and large waves. Uncertainty in the coastal flooding at the 100-year return period due to the combination of water levels and waves is explored through Monte-Carlo analysis and hydrodynamic modelling. Visualisation through flood maps shows that the inundation extent at New Brighton varies significantly for combined wave and surge events with a joint probability of 100 years, where the total flooded area ranges from 0 m<sup>2</sup> to 10,300 m<sup>2</sup>. Waves are an important flood mechanism at New Brighton but are dependent on high water levels to impact the coastal defences and reduce the effective freeboard. The combination of waves and high-water levels at this return level not only determine the magnitude of the flood extent but also the spatial characteristics of the risk, whereby flooding of residential properties is dominated by overflow from high water levels, and commercial and leisure properties are affected by large waves that occur when the water level is relatively high at the defences.</p>


2017 ◽  
Vol 49 (1) ◽  
pp. 281-290 ◽  
Author(s):  
Santiago García-López ◽  
Verónica Ruiz-Ortiz ◽  
Juan José Muñoz-Pérez

Abstract A methodology based on the use of time-lapse photographs is presented to evaluate the leakages over time of a reservoir (Montejaque dam, Málaga Province, Spain) that feeds a karstic aquifer. In particular, photographic control allows the evolution of water levels in the dam and the river that feeds it to be monitored. Through changes in water volume, which are calculated from the level differences, daily leakages are evaluated, and the relationship between leakages and the water level of the reservoir is established. The proposed method includes adjusting the hydric balance and the use of digital terrain model and climate data. The inputs (river flow and direct precipitation) and other outputs (direct evaporation) are also evaluated. Values between 4 m3/s and 0.35 m3/s are obtained for the reservoir infiltration, clearly superior to the values obtained at the time of the construction of the dam in the 1920s. Mobilisation of the filling of fractures and conduits in karstic massif and calcite dissolution are processes that can influence this behaviour. When the water level is very low, the obtained values are below the historical leakages due to deposition of clay sediments at the reservoir bottom.


Author(s):  
Satryo B. Utomo ◽  
Januar Fery Irawan ◽  
Rizqi Renafasih Alinra

Early warning of floods is an essential part of disaster management. Various automatic detectors have been developed in flood mitigation, including cameras. But reliability and accuracy have not been improved. Besides, the use of monitoring devices has been employed to monitor water levels in various water building facilities. The early warning flood detector was carried out with a sensor camera using an orange ball that floats near the water level gauge in a bounding box. This approach uses the integration of computer vision and image processing, namely digital image processing techniques, with Sobel Canny edge detection (SCED) algorithms to detect quickly and accurately water levels in real-time. After the water level is measured, a flood detection process is carried out based on the specified water level. According to the results of experiments in the laboratory, it has been shown that the proposed approach can detect objects accurately and fast in real-time. Besides, from the water level detection experiment, good results were obtained. Therefore, the object detection system and water level can be used as an efficient and accurate early detection system for flood disasters.


2020 ◽  
Vol 2 (2) ◽  
pp. 178
Author(s):  
Srie Wulandarie

AbstractThe purpose of this study was to determine the hydrodynamic model of the river so that can know the capacity of the river to accommodate the incoming water flow. The simulation models can be used in structural mitigation plan as an attempt to prevent flooding in the future. The application program used to create hydrodynamic models that Infoworks River Simulation integrated with GIS. Data cross-section of the river as much as 39 points inputted into Infoworks River Simulation program. Furthermore, the discharge input the Saddang River and the Mata Allo River to determine variations in water level at each cross-section. The results of this study showed an average increase in water level of the Saddang  and Mata Allo River in the event of the maximum discharge of 2.59 meters. Sectional increased water levels are all cross sections along the Saddang and Mata Allo River Saddang used in modeling the variation of the rise in water level of 0.8 to 5.39 meters.


2011 ◽  
Vol 1 (32) ◽  
pp. 38 ◽  
Author(s):  
Jacco Groeneweg ◽  
Joost Beckers ◽  
Caroline Gautier

In 2011 new Hydraulic Boundary Conditions must be established for the statutory assessment of flood protection in the Wadden Sea area, which is a complex tidal system in the northern part of the Netherlands. The aim is to base these normative wave conditions on the wave simulation model SWAN and the probabilistic method Hydra-K, to be consistent with other systems as the Holland Coast and the Zeeland Delta. Assumptions made for the latter water systems, like steady state wind forcing, uniform water levels and neglect of currents, are not valid in the tidal basin of the Wadden Sea. A schematic temporal variation of both wind direction and wind speed is applied to define wind fields that drive the hydrodynamic computations. Both wind fields and resulting water level and current fields form the input of SWAN computations for a large number of combinations of basic wind speed and wind direction, offshore surge level and phase difference between tide and maximum wind speed. The result is a large database of SWAN results that is used as a look-up table in Hydra-K to transform the offshore statistics to the load on the primary sea defenses. In general the more advanced method leads to wave heights that are up to 10% lower and wave periods that are 10-20% smaller than those obtained with the method that is presently applied for the Holland Coast and the Zeeland Delta. These differences can be ascribed to the inclusion of currents and positive shoreward tilt in water level. The inclusion of relevant physics in the hydrodynamic computations increases the accuracy of the resulting HBC. Therefore, the more advanced method will be applied to determine the HBC for 2011.


2000 ◽  
Vol 51 (7) ◽  
pp. 659 ◽  
Author(s):  
Gary J. Hancock

Thorium-series nuclides (228Th and 232Th) have been used to identify resuspended sediment in the Bega River estuary, south-eastern Australia. A non-conservative increase in concentration of suspended sediment of water in the vicinity of mid-estuary back-flow lagoons was associated with a decrease in the 228Th/232Th activity ratio (AR) of the suspended sediment. The lagoon sediment is characterized by a low estuarine 228Th/232Th signature, distinguishing it from freshwater suspended sediment recently delivered to the estuary, and identifying it as the likely source of the additional suspended sediment. Sediment-core 210Pb profiles show that the lagoons are accumulating sediment, presumably during high river-flow events. However this study indicates that during intervening periods of low flow, 40% of sediment deposited in the lagoons is subsequently resuspended and exported to the lower estuary, and possibly to the ocean. The utility of the 228Th/232Th AR to quantify sediment resuspension in estuaries is likely to be estuary-dependent, and is controlled by the extent of scavenging of dissolved 228Th by suspended particles.


2021 ◽  
Vol 9 (8) ◽  
pp. 912
Author(s):  
Yuezhao Tang ◽  
Yang Wang ◽  
Enjin Zhao ◽  
Jiaji Yi ◽  
Kecong Feng ◽  
...  

As a coastal trading city in China, Shantou has complex terrain and changeable sea conditions in its coastal waters. In order to better protect the coastal engineering and social property along the coast, based on the numerical simulation method, this paper constructed a detailed hydrodynamic model of the Shantou sea area, and the measured tide elevation and tidal current were used to verify the accuracy of the model. Based on the simulation results, the tide elevation and current in the study area were analyzed, including the flood and ebb tides of astronomical spring tide, the flood and ebb tides of astronomical neap tide, the high tide, and the low tide. In order to find the main tidal constituent types in this sea, the influence of different tidal constituents on tide elevation and tidal current in the study area was analyzed. At the same time, the storm surge model of the study area was constructed, and the flow field under Typhoon “Mangkhut” in the study area was simulated by using the real recorded data. Typhoon wind fields with different recurrence periods and intensities were constructed to simulate the change in the flow field, the sea water level, and the disaster situation along the coast. The results showed that under normal sea conditions, the sea water flows from southwest to northeast at flood tide and the flow direction is opposite at ebb tide. The tidal range is large in the northwest and small in the southeast of the study area. The tides in the study area are mainly controlled by M2, S2, K1, and O1 tidal constituents, but N2, K2, P1, and Q1 tidal constituents have significant effects on the high water level. The water level caused by typhoons increases significantly along the coast of Shantou City. In the west area of the Rong River estuary, a typhoon with a lower central pressure than 910 hPa may induce a water increase of more than 2 m.


Sign in / Sign up

Export Citation Format

Share Document