scholarly journals Erosion Dynamics of Cultivated Kelp, Saccharina latissima, and Implications for Environmental Management and Carbon Sequestration

2021 ◽  
Vol 8 ◽  
Author(s):  
Reinhold Fieler ◽  
Michael Greenacre ◽  
Sanna Matsson ◽  
Luiza Neves ◽  
Silje Forbord ◽  
...  

A growing trend of interest for the cultivation of kelp is driven by predictions for high global demands of important commodities, which require the development of alternative supplies of natural resources. In this study the dynamics of loss of biomass from cultivated Saccharina latissima were studied from February to August 2018 at two kelp farms in Northern (69°45.26′N/019°02.18′E) and in Mid-Norway (63°42.28′N/08°52.23′E). Kelp fronds at each farm were individually followed throughout the growing season. Sectional regression was applied for conversion of measured frond lengths to estimated dry weights. The study shows that between 40 and 100% of all individuals in the studied kelp population constantly eroded slightly from their distal ends. However, until June the accumulated loss was only 8% of produced dry weight. Due to dislodgement of whole sporophytes this picture changed in July and August to heavy losses in Mid-Norway. Thus, the overall losses of kelp in terms of accumulated dry weight were only 8–13% of the gross growth until harvest in June in Mid-Norway and August in Northern Norway. Losses increased significantly in Mid-Norway during July and reached 49.4% of the annual production in August. The rates of losses were separated into specific erosion and dislodgement rates. Erosion rates over the whole experimental period for the two sites were not significantly different, while differences in dislodgement rates between farm sites proved to be highly significant. The exported annual amount of carbon was estimated on the basis of lost and measured carbon content in the tissue. From these data a scenario was built for a commercial Norwegian kelp farm growing S. latissima showing a carbon export of 63–88 g C m–2y–1. This is eight times less than has been reported from scenarios for kelp farms in China. This study confirms that optimal timing of harvest is the most important management tool for avoidance of heavy losses from kelp farms. In conclusion, an industry with early harvest will likely have a low carbon export, while a late-harvested bulk production could export four to six times as much carbon with an increased potential for carbon sequestration.

2014 ◽  
Vol 11 (6) ◽  
pp. 9035-9069 ◽  
Author(s):  
S. H. M. Jacquet ◽  
F. Dehairs ◽  
A. J. Cavagna ◽  
F. Planchon ◽  
L. Monin ◽  
...  

Abstract. We report on the zonal variability of mesopelagic particulate organic carbon) remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October–November 2011) in an area of the Polar Front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with surface primary and export productions. Results for this early season study are compared with results obtained earlier (2005; KEOPS 1) for the same area during summer. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with less that 30% of carbon exported from the upper 150 m being remineralized in the mesopelagic column (150–400 m). For deeper stations (> 2000 m) located on the margin, inside a Polar Front meander, as well as in the vicinity of the Polar Front, east of Kerguelen, remineralization in the upper 400 m in general represents > 30% of carbon export, but when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. It appears that above the plateau (A3 site) mesopelagic remineralization is not a major barrier to the transfer of organic matter to the sea-floor (close to 500 m). There the efficiency of carbon sequestration into the bottom waters (> 400 m) reached up to 87% of the carbon exported from the upper 150 m. In contrast, at the deeper locations mesopelagic remineralization clearly limits the sequestration of carbon to depths > 400 m. For sites at the margin of the plateau (station E-4W) and the Polar front (station F-L), mesopelagic remineralization even exceeds upper 150 m export, resulting in a null sequestration efficiency to depths > 800 m. In the Polar Front meander, where successive stations form a time series, the capacity of the meander to transfer carbon to depth > 800 m is highly variable (0 to 73 %). The highest carbon transfer efficiencies in the meander are furthermore coupled to intense and complete deep (> 800 m) remineralization, resulting again in a close to zero deep (> 2000 m) carbon sequestration efficiency there.


2021 ◽  
Vol 905 (1) ◽  
pp. 012002
Author(s):  
C Prayogo ◽  
C Muthahar ◽  
R M Ishaq

Abstract The cause of global warming is the increasing carbon concentration arising from industrial activities, burning of fossils, and land-use change. The purpose of this research was to find out the allometric equation to calculate the local bamboo biomass and then to be able to calculate how much carbon sequestration at bamboo riparian forest since this area was rarely being explored. The parameters observed were the height and diameter of the bamboo stem at 1.3 m height of 6 types of local bamboo using destructive sampling, along with the measurement of bamboo weight. The carbon content of the bamboo biomass, litter, and soil was measured to complement the estimation of total carbon sequestration. The results showed that the allometric equation for estimating local bamboo biomass is Y=0.6396 X1.6162 with R2=0.77, obtained from the relationship equations between dry weight and the diameter. Total carbon sequestration of this system ranged between 81 to 215 tons C ha−1.


2006 ◽  
Vol 20 (3) ◽  
pp. 646-650 ◽  
Author(s):  
Nathan S. Boyd ◽  
Eric B. Brennan

Weed management is often difficult and expensive in organic production systems. Clove oil is an essential oil that functions as a contact herbicide and may provide an additional weed management tool for use on organic farms. Burning nettle, purslane, and rye responses to 5, 10, 20, 40, and 80% v/v clove oil mixture applied in spray volumes of 281 and 468 L/ha were examined. Log-logistic curves were fitted to the nettle and purslane data to determine the herbicide dose required to reduce plant dry weight 50% (GR50) and 90% (GR90). A three-parameter Gaussian curve was fitted to the rye data. The GR50 and GR90 were largely unaffected by spray volume. Nettle dry weight was reduced by 90% with 12 to 61 L clove oil/ha, whereas 21 to 38 L clove oil/ha were required to reduce purslane biomass to the same level. Rye was not effectively controlled by clove oil. Clove oil controls broadleaf weeds at high concentrations, but its cost makes broadcast applications prohibitive, even in high-value vegetable production systems.


2013 ◽  
Vol 5 (4) ◽  
pp. 508-512
Author(s):  
Gideon Olarewaju OKUNLOLA ◽  
Adekunle Ajayi ADELUSI

The experiment was carried out to determine the effects of heat stress on some growth parameters like shoot height, leaf area, fresh weight, dry weight as well as the accumulation of chlorophylls in Carica papaya. Seedlings of C. papaya were exposed to prior heat stress at 40 °C. A group of plants was placed in a Gallenkamp oven for four hours; another group of plants was placed in the oven for eight hours while the third group of plants was placed in a dark cupboard for the period of eight hours. Sampling was carried out at weekly intervals starting from seven days after treatment. Plants were randomly picked from each of the three treatments. Three replicates were used for each parameter. The results obtained from the study showed that there was an increment in the shoot height, leaf area, fresh weight and dry weight from the beginning to the end of the experimental period. However, the accumulation of chlorophylls did not follow a particular pattern. The analysis of variance carried out on the data obtained showed that heat stress had a significant effect on the petiole length, shoot height, leaf length, leaf width, leaf area, fresh weight and dry weight. Heat stress, however, did not produce a significant effect on the accumulation of chlorophylls a and b and total chlorophyll.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 78
Author(s):  
Tingfei Sun ◽  
Zhang Shen ◽  
Mobeen Shaukat ◽  
Cailian Du ◽  
Shaukat Ali

This study reports the effects of seed treatment with Cordyceps fumosorosea on seed germination, growth, colonization of eggplant (Solanum melongena), and growth of Bemisia tabaci (feeding on fungal colonized eggplant leaves). Germination rates of eggplant seeds were similar among different treatments. The growth parameters such as root length, shoot length, and number of leaves) differed significantly after 15, 30, and 60 days of seed treatment. The total dry weight of eggplant in response to treatment with C. fumosorosea isolates increased significantly when compared with the control. Both isolates of C. fumosorosea colonized different plant tissues, although the extent of colonization decreased during the experimental period. The colonization of eggplants by both C. fumosorosea isolates resulted in a significant reduction of B. tabaci incidence. This study possibly provides the first report of increased plant growth and increased insect mortality in eggplants inoculated with C. fumosorosea isolates.


2017 ◽  
Author(s):  
Ali Khatibi ◽  
Sharareh Pourebrahim ◽  
Mazlin Mokhtar

Abstract. In this study, in the city of Karaj five classes of land use-cover including residential, agriculture, rangeland, forest and barren areas were considered and randomly in each class a total of 20 points were selected and vegetation and soil samples were taken. In plant samples, the amount of carbon sequestration was determined by calculating the amount of organic carbon by dry weight and in soil samples, the amount of carbon sequestration was determined by using Walleky and Black method, too. For each area, the average value of carbon sequestration of samples was introduced as carbon sequestration index of that class. Average values for each category were determined as an indicator of carbon sequestration of that class and then by using the DINAMICA EGO software a simulation was conducted using cellular automata approach to simulate changes in the classes of land use-cover in the city of Karaj. Finally, by using carbon sequestration index and the results of the simulation, changes in carbon sequestration in each class were calculated. On this basis, it was found that in the 15-year period from 2014 to 2029, not considering the residential class as the effective use of carbon sequestration, the greatest amount of carbon sequestration was found in the agricultural class and the lowest carbon sequestration was found in barren area. Also, agriculture class will be faced with the huge reduction of carbon sequestration, because of expansion of the residential area.


2012 ◽  
Vol 518-523 ◽  
pp. 314-318
Author(s):  
Jian Ming Li ◽  
Wen Jun Wang ◽  
Xian Feng Zhang ◽  
Jing Gui Wu

The interaction of soil aggregate with humic substances (HS) is important for fertility and soil carbon sequestration, So it is one of the hot issues of international affairs and Low-carbon Society. In this paper, the pot experiment was conducted to study the effect of the different organic materials on the combined states of humus in black soil. The results showed as follow: Compared with control treatment(CK), application of organic materials significantly increased content of loosely combined in>2mm and content of stably combined, but there was markedly differences among organic materials. Woody residues made loosely and unitedly and stably combined forms of humus in 1-0.5mm aggregates higher than others, at the same time, unitedly and stably combined in 0.5-0.25mm of woody residues were the highest. Animal excrement significantly increased unitedly and stably combined in 2-1mm. And herb residues enhanced stably combined in >2mm obviously. Use of animal remnant resulted in significant increase of tightly combined, whereas markedly decreased tightly combined in 2-1mm. Optical property combined forms of humus varied among organic materials.


2021 ◽  
Vol 9 (11) ◽  
pp. 331-334
Author(s):  
I. Yu. Chekanova ◽  
A. N. Ryakhovskaya

The global economic crisis caused by the COVID-19 pandemic has forced us to look at development issues in a new way. As a result, many decision-makers have realized the importance of rebuilding economies with a sustainable development approach that involves investing not in fossil fuels but in renewable energies, reforestation, sustainable food systems, and cyclical, local and low-carbon economies. In this connection, the article considers food sharing as one of the possible mechanisms contributing to the achievement of sustainable development goals and at the same time being an anti-crisis management tool. At the same time, this article gives directly the goals in the field of sustainable development, the state of affairs in the field of achieving the set goals in modern realities, the measures taken at the international level and in Russia, the essence of food sharing is also revealed, examples of foreign practices are given, problems that impede development are identified of food sharing in Russia, possible options for their solutions are proposed and promising results after its implementation are reflected, as well as a table with the effect of food sharing on specific goals of sustainable development has been compiled by the generalization method. This article can be useful to people interested in the rational use of food, businesses in order to restructure business processes to meet the requirements of the modern economy and government officials for timely and effective adoption of measures in the field of sustainable development.


2020 ◽  
Vol 32 (5) ◽  
pp. 3305-3317 ◽  
Author(s):  
Joakim Olsson ◽  
Gunilla B. Toth ◽  
Eva Albers

Abstract Seaweed biomass has the potential to become an important raw material for bio-based production. The aim of this study was to screen the overall composition of several seaweed species on the Swedish west coast, including some scarcely studied species, to provide fundamentals for evaluation of biorefining potential and to benchmark with already potentially industrially relevant species and commercially important land-based biomasses. Twenty-two common seaweed species (green, red, brown) were collected and the carbohydrate, ash, protein, water and metal contents were measured. Carbohydrate content varied between 237 and 557 g kg−1 dry weight (dw), making it the largest constituent, on a dry weight basis, of most species in the study. Ash, which is considered unwanted in biorefining, ranged between 118 and 419 g kg−1 dw and was the largest constituent in several seaweeds, which were therefore considered unsuitable for biorefining. Protein content was most abundant in the red seaweeds but was generally low in all species (59–201 g kg−1 dw). High contents of several unwanted metals for processing or human consumption were found (e.g. aluminium, arsenic, copper, chromium and nickel), which need to be considered when utilizing seaweeds for certain applications. Potential targets for further biorefinery development mostly include species already known for their potential (Saccharina latissima, Laminaria digitata and Chondrus crispus) while some, such as Halidrys siliquosa and Dilsea carnosa, have not been previously noted. However, more detailed studies are required to explore biorefinery processes for these seaweeds, as well as how to potentially cultivate them.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 126 ◽  
Author(s):  
Pedro García-Caparros ◽  
Eva María Almansa ◽  
Francisco Javier Barbero ◽  
Rosa María Chica ◽  
María Teresa Lao

The purpose of the present study was to evaluate the effects of different light treatments on biomass, nutrient concentrations and physiological parameters of Fittonia verschaffeltii (Lem) Van Houtte. The aim was to establish a methodology to evaluate the effect of photosynthetically active radiation (PAR) emitted by lamps on biomass. The light treatments used were tube luminescent Dunn (TL-D), tube luminescent Dunn + light emitting diodes (LEDs) and Tube luminescent 5 (TL-5). At the end of the experimental period, biomass, nutritional, biochemical, and physiological parameters were assessed. A clear reduction in total plant dry weight under TL-D + LEDs at the end of the experiment was recorded. With respect to nutrient concentration in the different organs assessed, there was no clear response under the different light treatments. The growth under TL-D lamps resulted in the highest concentration of total soluble sugars and starch in leaves, whereas the highest value of indole 3-acetic acid concentration was under TL-5 lamps. Plants grown under TL-D + LEDs showed the lowest values of chlorophyll a, b and a + b. The relationship proposed between integrated use of spectral energy (IUSE) and total dry weight (TDW) showed a good correlation with an R2 value of 0.86, therefore we recommend this methodology to discern the effects of the different spectral qualities on plant biomass.


Sign in / Sign up

Export Citation Format

Share Document