scholarly journals Correlations between components of the immune system

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1174
Author(s):  
Yehudit Shabat ◽  
Yaron Ilan

Background: No evidence of the possibility to alter a constituent of the immune system without directly affecting one of its associated components has been shown yet. Methods: A schematic model was developed in which two triggers, fasting and splenectomy, were studied for their ability to affect the expression of cell membrane epitopes and the cytokine secretion of out-of-body autogeneic and syngeneic lymphocytes. Results: Fasting decreased expression of CD8 and CD25 and increased TNFα levels. The effect of splenectomy as a trigger was investigated in non-fasting mice by comparing splenectomized and non-splenectomized mice. An increase in the CD8 expression and in TNFα, IFNg, and IL10 secretion was noted. The effect of splenectomy as a trigger was investigated in fasting mice by comparing splenectomized and non-splenectomized mice. Splenectomy had a significant effect on expression of CD25 and CD4 CD25 and on secretion of TNFα, IFNg, and IL10. To determine the effect of keeping the cells in an out-of-body location on the expression of lymphocyte epitopes, tubes kept on top of the cages of the fasting mice were compared with tubes kept on top of empty cages. A significant change in the CD8 expression was noted. To determine the effect of keeping cells in an out-of-body location on cytokine secretion, tubes kept on top of cages were tested for cytokine levels. A significant decrease was noted for the secretion of TNFα and IFNg. Conclusions: The data obtained from this study characterized a system for induction of correlations between two components of the immune system without a transfer of mediators. The study showed that a mouse could affect cells at a distance and alter the expression of surface markers and cytokine secretion following two types of triggers: fasting and/or splenectomy. Thus, an out-of-body correlation can be induced between two components of the immune system.

2019 ◽  
Vol 26 (20) ◽  
pp. 3719-3753 ◽  
Author(s):  
Natasa Kustrimovic ◽  
Franca Marino ◽  
Marco Cosentino

:Parkinson’s disease (PD) is the second most common neurodegenerative disorder among elderly population, characterized by the progressive degeneration of dopaminergic neurons in the midbrain. To date, exact cause remains unknown and the mechanism of neurons death uncertain. It is typically considered as a disease of central nervous system (CNS). Nevertheless, numerous evidence has been accumulated in several past years testifying undoubtedly about the principal role of neuroinflammation in progression of PD. Neuroinflammation is mainly associated with presence of activated microglia in brain and elevated levels of cytokine levels in CNS. Nevertheless, active participation of immune system as well has been noted, such as, elevated levels of cytokine levels in blood, the presence of auto antibodies, and the infiltration of T cell in CNS. Moreover, infiltration and reactivation of those T cells could exacerbate neuroinflammation to greater neurotoxic levels. Hence, peripheral inflammation is able to prime microglia into pro-inflammatory phenotype, which can trigger stronger response in CNS further perpetuating the on-going neurodegenerative process.:In the present review, the interplay between neuroinflammation and the peripheral immune response in the pathobiology of PD will be discussed. First of all, an overview of regulation of microglial activation and neuroinflammation is summarized and discussed. Afterwards, we try to collectively analyze changes that occurs in peripheral immune system of PD patients, suggesting that these peripheral immune challenges can exacerbate the process of neuroinflammation and hence the symptoms of the disease. In the end, we summarize some of proposed immunotherapies for treatment of PD.


2021 ◽  
Author(s):  
Romina Mitarotonda ◽  
Martín Saraceno ◽  
Marcos Todone ◽  
Exequiel Giorgi ◽  
Emilio L Malchiodi ◽  
...  

Aim: Nanoparticles (NPs) interaction with immune system is a growing topic of study. Materials & methods: Bare and amine grafted silica NPs effects on monocytes/macrophages cells were analyzed by flow cytometry, MTT test and LIVE/DEAD® viability/cytotoxicity assay. Results: Bare silica NPs inhibited proliferation and induced monocyte/macrophages activation (increasing CD40/CD80 expression besides pro-inflammatory cytokines and nitrite secretion). Furthermore, silica NPs increased cell membrane damage and reduced the number of living cells. In contrast, amine grafted silica NPs did not alter these parameters. Conclusion: Cell activation properties of bare silica NPs could be hindered after grafting with amine moieties. This strategy is useful to tune the immune system stimulation by NPs or to design NPs suitable to transport therapeutic molecules.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammed M. Almutairi ◽  
Farzane Sivandzade ◽  
Thamer H. Albekairi ◽  
Faleh Alqahtani ◽  
Luca Cucullo

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Diana Liu

Air pollution has become a serious problem, the pollutant mainly came from industrial and vehicle exhaustion will harm people’s bodies to a different extent, cause lots of diseases like asthma, and cardiovascular disease. The system protects us are also be damaged by pollutant entering the tissue barrier, harm to immune cells and regulate cytokine secretion. This essay is mainly focused on the particulate matter, sulfur dioxide, and nitrogen oxide effect on the immune system from the innate immunity to the acquired immunity, and how the immune system defense.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ruifeng Liu ◽  
Wenjuan Chang ◽  
Hong Wei ◽  
Kaiming Zhang

Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.


MRS Advances ◽  
2016 ◽  
Vol 1 (56) ◽  
pp. 3783-3788 ◽  
Author(s):  
Serap Aksu

ABSTRACTThe main objective of this report is to demonstrate novel engineering technologies to investigate regulatory mechanisms of systems immunology in a time-dependent and high-throughput manner. Understanding of immune system behavior is crucial for accurate prognosis of infections and identification of diseases at early stage. An ultimate goal of biomedical engineering is to develop predictive models of immune system behavior in tissue, which necessitates a comprehensive map of dynamic (time-dependent) input-output relationships at the individual cell level. Traditionally, biochemical analysis on the cell signaling is obtained from bulky cell ensembles which average over relevant individual cell response. The response consists firstly of signaling protein (cytokine) secretions which are released during a disease state and which are used to activate the immune system to respond to the disease. We investigate the cytokine secretion dynamics of a single immune cell in response to the stimulant using automated and comprehensive optofluidic platforms. These platforms enable survival and manipulation of single cells in compartments having compatible sizes with cells as well as provide precise control over the type, dose and time-course of the stimulant. The cytokine secretion dynamics of single cell are typically explained by measuring the types, rates, frequencies and concentrations of various cytokines. For the quantitative measurements, label free localized surface plasmon resonance (LSPR) based biosensor can be integrated within the microfluidic device. Microfluidic channels can confine secreted cytokines in compartments, minimize dilution effects and increase detection sensitivity for label free plasmonic biosensing. The direct application of LSPR to in-situ live cell function analysis is still in its infancy and use of such in-situ, real time, and label free biodetection will effortlessly provide high-throughput quantitative bioanalysis for understanding immune system behavior.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3351-3351
Author(s):  
Charles A. Gullo ◽  
William Hwang ◽  
Melvin Au ◽  
Edward A. Greenfield ◽  
Kenneth C. Anderson ◽  
...  

Abstract Effective immune-based therapies against the plasma cell malignancy, multiple myeloma (MM), are currently lacking. Identification of novel antigens (Ag) on the surface of MM cells to use as cellular targets for the destruction of cancer cells by the body’s immune system has been of great interest. We and others have demonstrated that CD40 stimulation of MM cells results in marked upregulation of membrane bound proteins such as Ku86. Using CD40 triggered MM cells as immunogens and hybridoma technology; we generated a monoclonal antibody (mAb), 6D11, that recognizes a CD40 induced cell membrane Ag on MM cells. This Ag is detectable on the surface of MM cells using indirect immunofluorescence flow cytometric analysis. Moreover, in Western immunoblotting assays, 6D11 mAb reacts with a 94 kDa protein, which is strongly associated with a 78 kDa protein. Using high performance liquid chromatography and protein microsequencing, we confirm that these proteins are the heat shock proteins (HSP), glucose-regulated peptide 94 (GRP94) and GRP78, respectively. These data were confirmed using co-immunprecipitation experiments. Furthermore, we demonstrate through indirect immunofluorescence flow cytometric analysis and quantitative real time reverse transcription polymerase chain reaction (RQ-PCR) that CD40 ligand (CD40L) stimulation of MM cells results in rapid upregulation of both GRP94 and GRP78. Since HSPs have been shown to play a role in both Ag presentation, as well as the intracellular transport of cellular Ags, it is tempting to speculate that cell membrane expression of tumor-specific peptides could also be induced via CD40 triggering. Accordingly, CD40 induced cell membrane HSP expression resulted in increased antigenicity as determined by increased co-stimulatory molecule expression on Ag presenting cells (APC) and by increased immunoreactivity in mixed lymphocyte reactions (MLR). This suggests that CD40 induced HSP expression may indeed result in increased recognition of MM cancer by the immune system. Our study therefore supports the development of CD40-based targeted cell therapies against MM.


2018 ◽  
Vol 17 (8) ◽  
pp. 618-625 ◽  
Author(s):  
Hussein Kadhem Al-Hakeim ◽  
Sadiq Neama Al-Kufi ◽  
Arafat Hussein Al-Dujaili ◽  
Michael Maes

Background & Objective: Major depressive disorder (MDD) has been associated with inflammatory processes, including increased cytokine levels, even in individuals who are otherwise physically healthy, while some MDD patients may show insulin resistance (IR). Method: However, correlations between cytokines and IR parameters have not been studied extensively in MDD. In the present study, we measured IL-1β, IL-4, IFN-γ, TGF-β1, insulin and glucose in 63 MDD patients and 27 healthy controls. The associations between cytokine levels and IR were examined. Results: The results revealed a significant increase (p<0.05) in serum levels of IL-1β, IL-4, IFN-γ, TGF-β1, insulin, insulin/glucose ratio, and insulin resistance (HOMA2IR) in MDD patients as compared with controls. There was a significant correlation between HOMA2IR with both IFN-γ (ρ=0.289, p<0.05) and TGF-β1 (ρ=0.364, p<0.05). Conclusion: The present study further confirms that MDD is accompanied by activation of the immune system with significant elevations in the levels of four cytokines. These results indicate stimulation of the immune system and increased IR and modulation of IR by increased cytokine levels in MDD. These findings show that immune activation and associated IR are a new drug target in depression.


Sign in / Sign up

Export Citation Format

Share Document