scholarly journals Troglitazone-Induced PRODH/POX-Dependent Apoptosis Occurs in the Absence of Estradiol or ERβ in ER-Negative Breast Cancer Cells

2021 ◽  
Vol 10 (20) ◽  
pp. 4641
Author(s):  
Sylwia Lewoniewska ◽  
Ilona Oscilowska ◽  
Thi Yen Ly Huynh ◽  
Izabela Prokop ◽  
Weronika Baszanowska ◽  
...  

The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, ROS production was measured by fluorescence assay. Protein expression was determined by Western blot and proline concentration by LC/MS analysis. PRODH/POX degrades proline yielding reactive oxygen species (ROS). Estrogens stimulate collagen biosynthesis utilizing free proline and limiting its availability for PRODH/POX-dependent apoptosis. TGZ cytotoxicity was highly pronounced in wild-type MDA-MB-231 cells cultured in medium without estradiol or in the cells cultured in medium with estradiol but deprived of ERβ (by ICI-dependent degradation), while in PRODH/POX-silenced cells the process was not affected. The TGZ cytotoxicity was accompanied by increase in PRODH/POX expression, ROS production, expression of cleaved caspase-3, caspase-9 and PARP, inhibition of collagen biosynthesis, prolidase activity and decrease in intracellular proline concentration. The phenomena were not observed in PRODH/POX-silenced cells. The data suggest that TGZ-induced apoptosis in MDA-MB-231 cells cultured in medium without estradiol or deprived of ERβ is mediated by PRODH/POX and the process is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis. It suggests that combined TGZ and antiestrogen treatment could be considered in experimental therapy of estrogen receptor negative breast cancers.

2016 ◽  
Vol 34 (25) ◽  
pp. 2961-2968 ◽  
Author(s):  
Charlotte Fribbens ◽  
Ben O’Leary ◽  
Lucy Kilburn ◽  
Sarah Hrebien ◽  
Isaac Garcia-Murillas ◽  
...  

Purpose ESR1 mutations are selected by prior aromatase inhibitor (AI) therapy in advanced breast cancer. We assessed the impact of ESR1 mutations on sensitivity to standard therapies in two phase III randomized trials that represent the development of the current standard therapy for estrogen receptor–positive advanced breast cancer. Materials and Methods In a prospective-retrospective analysis, we assessed ESR1 mutations in available archived baseline plasma from the SoFEA (Study of Faslodex Versus Exemestane With or Without Arimidex) trial, which compared exemestane with fulvestrant-containing regimens in patients with prior sensitivity to nonsteroidal AI and in baseline plasma from the PALOMA3 (Palbociclib Combined With Fulvestrant in Hormone Receptor–Positive HER2-Negative Metastatic Breast Cancer After Endocrine Failure) trial, which compared fulvestrant plus placebo with fulvestrant plus palbociclib in patients with progression after receiving prior endocrine therapy. ESR1 mutations were analyzed by multiplex digital polymerase chain reaction. Results In SoFEA, ESR1 mutations were found in 39.1% of patients (63 of 161), of whom 49.1% (27 of 55) were polyclonal, with rates of mutation detection unaffected by delays in processing of archival plasma. Patients with ESR1 mutations had improved progression-free survival (PFS) after taking fulvestrant (n = 45) compared with exemestane (n = 18; hazard ratio [HR], 0.52; 95% CI, 0.30 to 0.92; P = .02), whereas patients with wild-type ESR1 had similar PFS after receiving either treatment (HR, 1.07; 95% CI, 0.68 to 1.67; P = .77). In PALOMA3, ESR1 mutations were found in the plasma of 25.3% of patients (91 of 360), of whom 28.6% (26 of 91) were polyclonal, with mutations associated with acquired resistance to prior AI. Fulvestrant plus palbociclib improved PFS compared with fulvestrant plus placebo in both ESR1 mutant (HR, 0.43; 95% CI, 0.25 to 0.74; P = .002) and ESR1 wild-type patients (HR, 0.49; 95% CI, 0.35 to 0.70; P < .001). Conclusion ESR1 mutation analysis in plasma after progression after prior AI therapy may help direct choice of further endocrine-based therapy. Additional confirmatory studies are required.


2017 ◽  
Vol 55 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Justin C. Cikomola ◽  
Antoine S. Kishabongo ◽  
Karl Vandepoele ◽  
Marieke De Mulder ◽  
Philippe B. Katchunga ◽  
...  

Abstract Background: Fructosamine 3 kinase (FN3K) is a deglycating enzyme, which may play a key role in reducing diabetes-induced organ damage by removing bound glucose from glycated proteins. We wanted to develop a simple colorimetric method for assaying FN3K activity in human body fluids. Methods: Glycated bovine serum albumin (BSA) was obtained by glycation with a 10% glucose solution at 37 °C. After 72 h, glycated BSA was dialyzed against phosphate buffered saline (0.1 mol/L, pH 7.4). The dialyzed solution (containing ±1000 µmol/L fructosamine) was used as an FN3K substrate. In the assay, 300 µL of substrate was incubated with 50 µL of serum and 100 µL of MgCl2 (0.7 mmol/L)/ATP (3.2 mmol/L). The fructosamine concentration was determined at the start and after incubation (120 min, 25 °C). The decrease in fructosamine concentration over time is a measure for the FN3K activity (1 U corresponding to 1 µmol/min). Concomitantly, the FN3K SNP rs1056534 and the ferroportin SNP rs1156350 were genotyped. Results: Within-assay CV was 6.0%. Reference values for FN3K activity in serum were 14.2±1.6 U/L (n=143). Reference values for FN3K were neither age- nor sex-dependent. The various FN3K SNP rs1056534 genotypes showed no significant differences in serum FN3K activity. In diabetics (n=191), values (14.0±2.2 U/L) were comparable to those of the controls. FN3K activity in erythrocytes was significantly higher (170.3±7.6 U/L). The intra-erythrocytic FN3K activity makes the results prone to hemolysis. FN3K activity depended on the ferroportin Q248H genotypes, with the highest value for the wild type genotype. Neither transferrin saturation nor ferritin were confounders for the FN3K activity. FN3K activity was significantly (p<0.0001) correlated with HbA1c values, although the correlation between FN3K and HbA1c was weak. Conclusions: The simple colorimetric method allows determining FN3K activity in human serum. The assay may be useful for studying the impact of deglycation processes in diabetes mellitus.


2015 ◽  
Vol 223 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Christina Leibrock ◽  
Michael Hierlmeier ◽  
Undine E. Lang ◽  
Florian Lang

Abstract. The present study explored the impact of Akt1 and Akt3 on behavior. Akt1 (akt1-/-) and Akt3 (akt3-/-) knockout mice were compared to wild type (wt) mice. The akt1-/- mice, akt3-/- mice, and wt mice were similar in most parameters of the open-field test. However, the distance traveled in the center area was slightly but significantly less in akt3-/- mice than in wt mice. In the light/dark transition test akt1-/- mice had significantly lower values than wt mice and akt3-/- mice for distance traveled, number of rearings, rearing time in the light area, as well as time spent and distance traveled in the entrance area. They were significantly different from akt3-/- mice in the distance traveled, visits, number of rearings, rearing time in the light area, as well as time spent, distance traveled, number of rearings, and rearing time in the entrance area. In the O-maze the time spent, and the visits to open arms, as well as the number of protected and unprotected headdips were significantly less in akt1-/- mice than in wt mice, whereas the time spent in closed arms was significantly more in akt1-/- mice than in wt mice. Protected and unprotected headdips were significantly less in akt3-/- mice than in wt mice. In closed area, akt3-/- mice traveled a significantly larger distance at larger average speed than akt1-/- mice. No differences were observed between akt1-/- mice, akt3-/- mice and wt-type mice in the time of floating during the forced swimming test. In conclusion, akt1-/- mice and less so akt3-/ mice display subtle changes in behavior.


2020 ◽  
Author(s):  
Lungwani Muungo

Although it is well established that estrogen deficiencycauses osteoporosis among the postmenopausalwomen, the involvement of estrogen receptor (ER) in itspathogenesis still remains uncertain. In the presentstudy, we have generated rats harboring a dominantnegative ERa, which inhibits the actions of not only ERabut also recently identified ERb. Contrary to our expectation,the bone mineral density (BMD) of the resultingtransgenic female rats was maintained at the same levelwith that of the wild-type littermates when sham-operated.In addition, ovariectomy-induced bone loss wasobserved almost equally in both groups. Strikingly, however,the BMD of the transgenic female rats, after ovariectomized,remained decreased even if 17b-estradiol(E2) was administrated, whereas, in contrast, the decreaseof littermate BMD was completely prevented byE2. Moreover, bone histomorphometrical analysis ofovariectomized transgenic rats revealed that the higherrates of bone turnover still remained after treatmentwith E2. These results demonstrate that the preventionfrom the ovariectomy-induced bone loss by estrogen ismediated by ER pathways and that the maintenanceof BMD before ovariectomy might be compensatedby other mechanisms distinct from ERa and ERbpathways.


2021 ◽  
Vol 22 (2) ◽  
pp. 772
Author(s):  
Javier Conde ◽  
Marlene Schwarzfischer ◽  
Egle Katkeviciute ◽  
Janine Häfliger ◽  
Anna Niechcial ◽  
...  

Environmental and genetic factors have been demonstrated to contribute to the development of inflammatory bowel disease (IBD). Recent studies suggested that the food additive; titanium dioxide (TiO2) might play a causative role in the disease. Therefore, in the present study we aimed to explore the interaction between the food additive TiO2 and the well-characterized IBD risk gene protein tyrosine phosphatase non-receptor type 2 (Ptpn2) and their role in the development of intestinal inflammation. Dextran sodium sulphate (DSS)-induced acute colitis was performed in mice lacking the expression of Ptpn2 in myeloid cells (Ptpn2LysMCre) or their wild type littermates (Ptpn2fl/fl) and exposed to the microparticle TiO2. The impact of Ptpn2 on TiO2 signalling pathways and TiO2-induced IL-1β and IL-10 levels were studied using bone marrow-derived macrophages (BMDMs). Ptpn2LysMCre exposed to TiO2 exhibited more severe intestinal inflammation than their wild type counterparts. This effect was likely due to the impact of TiO2 on the differentiation of intestinal macrophages, suppressing the number of anti-inflammatory macrophages in Ptpn2 deficient mice. Moreover, we also found that TiO2 was able to induce the secretion of IL-1β via mitogen-activated proteins kinases (MAPKs) and to repress the expression of IL-10 in bone marrow-derived macrophages via MAPK-independent pathways. This is the first evidence of the cooperation between the genetic risk factor Ptpn2 and the environmental factor TiO2 in the regulation of intestinal inflammation. The results presented here suggest that the ingestion of certain industrial compounds should be taken into account, especially in individuals with increased genetic risk


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2021 ◽  
pp. 1-8
Author(s):  
Costanza Ferrari Bardile ◽  
Harwin Sidik ◽  
Reynard Quek ◽  
Nur Amirah Binte Mohammad Yusof ◽  
Marta Garcia-Miralles ◽  
...  

Background: The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington’s disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. Objective: We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. Methods: Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. Results: We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. Conclusion: Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.


2008 ◽  
Vol 26 (33) ◽  
pp. 5352-5359 ◽  
Author(s):  
Michael C. Heinrich ◽  
Robert G. Maki ◽  
Christopher L. Corless ◽  
Cristina R. Antonescu ◽  
Amy Harlow ◽  
...  

PurposeMost gastrointestinal stromal tumors (GISTs) harbor mutant KIT or platelet-derived growth factor receptor α (PDGFRA) kinases, which are imatinib targets. Sunitinib, which targets KIT, PDGFRs, and several other kinases, has demonstrated efficacy in patients with GIST after they experience imatinib failure. We evaluated the impact of primary and secondary kinase genotype on sunitinib activity.Patients and MethodsTumor responses were assessed radiologically in a phase I/II trial of sunitinib in 97 patients with metastatic, imatinib-resistant/intolerant GIST. KIT/PDGFRA mutational status was determined for 78 patients by using tumor specimens obtained before and after prior imatinib therapy. Kinase mutants were biochemically profiled for sunitinib and imatinib sensitivity.ResultsClinical benefit (partial response or stable disease for ≥ 6 months) with sunitinib was observed for the three most common primary GIST genotypes: KIT exon 9 (58%), KIT exon 11 (34%), and wild-type KIT/PDGFRA (56%). Progression-free survival (PFS) was significantly longer for patients with primary KIT exon 9 mutations (P = .0005) or with a wild-type genotype (P = .0356) than for those with KIT exon 11 mutations. The same pattern was observed for overall survival (OS). PFS and OS were longer for patients with secondary KIT exon 13 or 14 mutations (which involve the KIT-adenosine triphosphate binding pocket) than for those with exon 17 or 18 mutations (which involve the KIT activation loop). Biochemical profiling studies confirmed the clinical results.ConclusionThe clinical activity of sunitinib after imatinib failure is significantly influenced by both primary and secondary mutations in the predominant pathogenic kinases, which has implications for optimization of the treatment of patients with GIST.


Sign in / Sign up

Export Citation Format

Share Document